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ABSTRACT 
 
Content Based Image Retrieval (CBIR) Systems have been employed in a wide variety of critical 

applications such as intellectual property management [47], facial recognition [46], and inappropriate 

content detection [48]. Most CBIRs are vulnerable to adversarial attacks, where small, imperceptible 

perturbations to input images cause system failure. In this paper, we propose a zero-query, black-box 

adversarial attack method that simulates an attack setting where the attacker has no knowledge about the 
CBIR model architecture and is unable to make multiple queries. The proposed method uses an ensemble-

based approach, generating one perturbation for an input image that severely hinders the ability of six 

different CBIR models. Our approach is successfully able to disrupt the relevance of our target image 

retrieval models with a 65% decrease in Mean Average Precision (mAP) as compared to  state-of-the-art 

UAP [18]. We hope our method serves as a baseline for the evaluation of robustness for future image 

retrieval research. 
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1. INTRODUCTION 
 

In recent years, Convolutional Neural Networks (CNNs) have shown incredible results in tasks 

such as image classification [11], object detection [29], and image retrieval [39], becoming the 
foundation of technologies such as self-driving cars [3], image search engines [1], [9] and facial 

recognition [2]. However, despite these impressive breakthroughs, it has been proven that CNNs 

can be vulnerable to adversarial attacks [10], [35], examples which contain perturbations 
imperceptible to humans yet can cause networks to make drastic, unexpected mistakes. In light of 

this discovery, there has been an increased awareness from researchers to understand precisely 

the nature of adversarial attacks and its potential dangers to machine learning intensive 
applications. 

 

While adversarial attacks for image classification have been studied thoroughly [10], [31], [35], 

there has been a recent surge of interest in examining the capability of adversarial examples in 
exploiting Content Based Image Retrieval (CBIR) Systems [23], [45] specifically those utilizing 

CNNs as feature extractors [6], [19], [23], [45].  
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1.1. Content Based Image Retrieval  
 

Content Based Image Retrieval Systems (CBIRs) have been utilized in a wide variety of 

applications such as facial search [46], intellectual property management [47], and inappropriate 
content detection [48]. In a typical CBIR System, as illustrated in Figure 1, an image is passed 

through a CNN feature extractor, where it is encoded into a lower dimensional space [26], [27] . 

The CBIR System then returns the closest images in the vicinity of the input image’s encoding 
using a distance metric (e.g. cosine similarity, vector dot product, or euclidean distance). Thus, 

by adding an imperceptible perturbation to the input image, an attack can manipulate the image’s 

internal representation, leading to a completely different set of images being returned.  

 
Consider the use case of digital rights management, where artists submit their graphic designs to 

a CBIR system, and similar images are returned so that a professional monitor can ensure that no 

copyright is violated. With an adversarial attack on a digital rights management system, an 
attacker could plagiarize a graphic design, add an imperceptible perturbation, and ensure that 

irrelevant images are retrieved by the system, escaping the detection of plagiarism by the 

professional monitor. Thus, it is extremely important to understand the vulnerabilities of content-
based image retrieval systems in order to develop more robust models in the future that are 

insusceptible to attackers with dangerous motives. 

 

 
 

Figure 1. Content Based Image Retrieval. An image is passed through a CNN Feature Extractor, where it is 

converted to a feature vector. The IR Engine then returns images with similar feature vectors around the 

input image. 

 

1.2. White-Box and Black-Box Adversarial Attacks   
 
We classify adversarial attacks on image retrieval based on the attacker’s access to a target 

model. In a white-box attack setting, attackers have full access to the target model’s weights and 

parameters. With this information at hand, most white-box attacks for image retrieval rely on 
optimizing a loss function between the input image’s encoding and those of other database 

images, utilizing backpropagation to update the input image and produce the adversarial image 

[23], [37]. On the contrary, in a black-box attack, attackers have no information about a model’s 

architecture or parameters. Black-box attacks typically fall into three categories. 
 

1.2.1. Gradient Estimation Attacks  

 
Gradient Estimation attacks attempt to estimate the true gradient of the target model making 

queries to the target model and utilizing techniques such as Zeroth Order Optimization. (ZOO) 
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[7], [20], Natural Evolution Framework (NES) [24], and Bayesian Optimization [30], [32]. While 
these approaches often lead to effective perturbations, their drawback comes from their reliance 

on a vast number of queries to the target model, which may be impractical in most settings due to 

query limits as well as the potential for detection. 

 

1.2.2. Universal Perturbation Attacks 

 

Universal Perturbation attacks aim to learn image-agnostic perturbations. For instance, [19] 
proposes a novel model distillation approach to learn the ranking propensities of the target image 

retrieval model. They then attempt to corrupt listwise relationships [19] to optimize their 

adversarial image. While Universal Perturbations can be highly effective, their main limitation 
comes from the fact that they too require a large number of queries to train their model 

distillation pipeline. In addition, by generating a single adversarial noise, patterns of UAPs can be 

very evident on certain images. 

 

1.2.3. Transferable Attacks 
 
Transferable Attacks aim to fool the black-box model by optimizing an objective function on one 

or multiple surrogate models. These attacks typically employ white-box methodologies in the 

optimization process, but often suffer from overfitting, a phenomenon where the generated 

perturbations do an excellent job on the white-box surrogate models but fail to transfer and 
disrupt the black-box model. Approaches to overcome the problem of transferability in image 

classification settings include integrating the gradients generated through back-propagation [14], 

variance tuning the adversarial image with gaussian noise [40], [41], and utilizing multiple 
surrogate models [44]. 

 

1.3. Zero-Query, Boosted Ambush (ZQBA) Adversarial Attack 
 

Assuming a setting similar to digital rights management where an attacker must simply submit an 

image to a CBIR system and is unable to make multiple queries to the hidden black-box image 
retrieval model, query-intensive approaches such as UAP [19] and QAIR[20] are impractical due 

to their heavy reliance on using information from the retrieved images, which may not be 

available to an attacker. Thus, a successful adversarial attack for such a situation must require no 

queries to the target model while also being able to eliminate the most relevant images. This 
requirement of zero queries to the target model significantly increases the challenge of crafting a 

successful adversarial attack due to the inability of an attacker to use any feedback from the 

results of a perturbed image. Thus, the perturbation must be crafted, so it causes the CBIR system 
to fail the first time it ever sees the image. 

 

In this paper, to address the limitations of other image retrieval adversarial attacks, we propose 
the first Zero-Query, Ensemble-Based, Transferable, Black-Box Adversarial Attack on Image 

Retrieval Systems. We first formulate the problem of adversarial attacks on image retrieval as an 

optimization problem of maximizing the distance between the adversarial image and input in 

embedding space, to achieve a successful attack, while minimizing the distance between the 
adversarial image and input image in image space, to maintain an imperceptible attack. Next, we 

introduce a novel ensemble-based approach for adversarial attacks on image retrieval. We then 

boost our attack for transferability by optimizing our ensemble loss function with adaptive 
moment estimation, Adam [17]. We extensively evaluate our attack’s performance in disrupting 

both the relevance and ranking order of images returned. Our results show that our proposed 

method results in a large drop in mean average precision (mAP) across multiple attack models 
and datasets. Thus, our main contributions can be summarized as followed: 
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 We propose the first Zero-Query Adversarial Attack for Image Retrieval using an 

ensemble approach to aid in the transferability of our perturbations on black-box image 
retrieval models 

 We boost our attack with adaptive moment estimation, Adam [17], optimization to 

improve the gradient steps at each iteration 

 We highlight the performance of our method across multiple image retrieval models and 

across multiple image retrieval datasets. 

 

2. METHODOLOGY 
 

2.1. Problem Formulation 
 

In a black-box adversarial attack setting, we assume no a priori knowledge about the architecture 

of the image retrieval system. However, we act under the simplifying assumption that the system 

uses a CNN feature extractor to obtain low-dimensional image representations. Given an input 
image xin, a set of retrievable images S, a black-box feature-extraction model f, and a distance 

metric dist(x1, x2; f) (cosine similarity, vector dot-product, euclidean distance, etc.), the black-box 

image retrieval system RK returns the top K similar images according to the distance metric, 
relating the features of the input image and other database images. Mathematically, this can be 

formulated as 

 

    (1) 
 

yielding {xout 1 , xout 2 , ・ ・ ・ , xout K} as the top K images returned. 

 

In an Image Retrieval Adversarial Attack, the attacker attempts to fool the image retrieval system 
into returning as few of the original top K images as possible. Mathematically, the attacker 

attempts to find an imperceptibly modified adversarial image subject to  

 

        (2) 

 

Under the assumption from Equation 1, this objective is equivalent to finding an adversarial 
image that maximizes the distance between the original image and the adversarial image in 

feature space (Fig. 2), resulting in a more tractable optimization: 

 

        (3) 
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Figure 2. Adversarial Attacks on Image Retrieval. The adversary attempts to inject an imperceptible 

perturbation that moves the input image as far away as possible from its original image embedding, so the 

image retrieval engine returns a new set of similar images 

 

2.2. Objective Function 
 
Given the problem formulation outlined in Equation 3, we formulate the objective of our 

adversarial attack as fooling the image retrieval system while maintaining an imperceptible 

difference between the original image and the adversarial image. Following prior work [4], we 
use the l-infinity norm to represent attack imperceptibility and add this as a regularization term in 

the objective function. We further use a Euclidean distance function for simplicity, though as we 

demonstrate later this simplification does not harm the attack’s generalization to image retrieval 

systems using other distance metrics. This yields the following objective function for the 
attack: 

 

    (4) 
 
where ϵ is the maximum perturbation per pixel. 

 

In our approach, we attempt to maximize the distance in embedding space between xadv and xin by 

attempting to guide the adversarial representation f(xadv) toward f(xt), the internal representation 
of a randomly selected target image xt. Similar to [41], we find this direction-oriented objective 

leads to a less perceptible perturbation as opposed to maximizing the distance between f(xadv) and 

the f(xin) directly. Since we do not have access to the parameters of the target model, we choose 
to utilize surrogate models in an ensemble manner inspired by [24] in order to accomplish our 

objective. 

 

2.3. Ensemble Based Adversarial Attack 
 

In order to improve the transferability of adversarial attacks across multiple deep neural network 
architectures and avoid overfitting to a single surrogate model, [44] proposes an ensemble-based 

adversarial attack based on the philosophy of meta learning that attempts to bridge the gradient 

directions between surrogate models and any black-box model. Our approach is inspired by 

[44]’s method of model selection and rotation, but we introduce a new way to optimize our 
objective function across our ensemble of models using Adam [17]. We break our Zero-Query 

Boosted Ambush Attack into two steps: Ensemble Optimization and Ensemble Refinement. 
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2.3.1. Ensemble Optimization Step 
 

Given K surrogate feature extraction models, M1,M2, ・ ・ ・ ,MK, during each iteration, we 

randomly select n + 1 models. During each ensemble optimization step, we take n feature 

extractors Mk1 ,Mk2 , ・ ・ ・ ,Mkn and optimize a joint objective loss function. Specifically, we 

optimize a fused Mean Squared Error (MSE) loss across surrogate feature extractors between 

their corresponding feature representation of xin and xt in the ensemble optimization step. 

Mathematically, our ensemble optimization loss can be formulated as 
 

     (5) 
 

where 
 

    (6) 
 

z represents the length of the feature vector of model Mki , and wi is a weight such that  

  

 
 

2.3.2. Ensemble Refinement Step 

 

We follow [24] by treating the last remaining model Mkn+1 as a simulated black-box model. We 

utilize the adversarial image xadv generated by optimizing (5) in the ensemble optimization step 

and refine its perturbation by optimizing the ensemble refinement loss function, which calculates 
the MSE between Mkn+1 (xadv) and Mkn+1 (xt). Mathematically, this can be formulated as 

 

      (7) 
 

We repeat the Ensemble Optimization Step and Ensemble Refinement Step in the attack for a 
total of T iterations. Within each iteration, we run N Ensemble Optimization iterations before 

advancing to the Ensemble Refinement Step. Our whole ensemble workflow is summarized in 

Figure 3. 

 

2.4. Adam Optimization  
 

Adaptive Moment Estimation (Adam) [17] is a successful stochastic optimization technique 

which has been employed widely for training neural networks. Adam attempts to improve the 

optimization process by adapting learning rates for the various parameters it attempts to optimize. 
It does so by keeping track of the decaying mean gradient (first moment) and variance (second 

moment) for each input variable. In the image classification setting, Adam has shown incredible 

progress in improving the transferability of adversarial attacks across neural networks [5], [43]. 
We utilize Adam to optimize our input image to produce an adversarial image in a manner 

that most optimally accomplishes objective (4).  
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Figure 3. ZQBA Workflow. The Ensemble Optimization Phase consists of optimizing the objective 

function across 5 surrogate models. The generated perturbation from the Ensemble Optimization Phase is 

then refined in the Ensemble Refinement phase by optimizing the MSE objective function with the held-

out, simulated black-box model. With this approach, we attempt to bridge the gradient directions between 

our set of surrogate models and any black-box model.  

 

Our full algorithm can be summarized below: 

 

3. ALGORITHM  
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4. EXPERIMENTS  
 
In this section, we present our quantitative results across multiple image retrieval models and 

datasets as well as an analysis of our attack’s performance. 

 

4.1. Experimental Settings  
 

 Datasets: We utilize the Oxford5k [25] and Paris6k [25] datasets to evaluate our attack. 

The Oxford5k dataset consists of 5,062 images. It contains 5 query images for 11 
different landmarks across Oxford, Great Britain, making up a total of 55 query images. 

The dataset has been manually annotated to generate a ground truth. Similarly, the 

Paris6k dataset consists of 6,412 images from across Paris, France with 55 query images 

from 11 different landmarks. 

 Black-Box Models: For black-box image feature extractors, we choose to attack AlexNet 
(A) [18], VGG-16 (V) [33], and ResNet-101 (R) [11] pretrained on ImageNet[8]. For 

fine-tuned features, we add Generalized Mean (GEM) Pooling [27] and Max Pooling 

(MAC) [28], [38] to the final feature vectors obtained from each our feature extractors. 
Thus, we attack a total of six black-box models: V-GEM, V-MAC, A-GEM, A-MAC, R-

GEM, and R-MAC. 

 Evaluation Metrics: We evaluate our proposed method on the annotated ground truth 

using the conventional ranking metric for information retrieval Mean Average Precision 

(mAP). We further utilize the Relevance Based Loss (RBL) Function from [20] as it does 
an excellent job of consolidating both the order and intersection of the retrieved top K 

images from a clean query and an adversarial query into a single value using Normalized 

Discounted Cumulative Gain (NDCG) [16]. We lastly evaluate the ability of our attack to 
completely subvert the top-10 and top-5 retrieved images from a clean query by 

introducing two new metrics called “Top 10 Knockout%” (Top 10 KO%) and “Top 5 

Knockout%” (Top 5 KO%). 

 Baselines: We evaluate against Universal Adversarial Perturbations Against Image 
Retrieval (UAP) [19], a state-of-the-art paper for adversarial attacks against image 

retrieval. Although they utilize over 1000 queries to the black-box model compared to 

our 0 queries, they serve as a good baseline for our results. 

 

4.2. Implementation Details 
 

 Surrogate Models: For our Ensemble-Based Algorithm, we utilize 8 feature extractors 
with architectures different from those of our black-box models to simulate the true 

black-box setting. The surrogate models we utilize are GoogleNet [34], Swin 

Transformer [21], SqueezeNet [15], DenseNet121 [13], MobileNetV3 [12], MNASNet 

[36], ConvNEXT [22], and RegNet [42]. For each of these networks, we remove the final 
classification layer, taking the final feature representation. 

 Hyperparameters: We set the number of iterations T=20, the number of Ensemble 

Optimization iterations per iteration N=8, and the number of models selected for 

ensemble optimization n=5 for all of our experiments. Our learning rate for our Adam 
optimizer is set to 0.0065 as we find this value gives us the best results while maintaining 

perceptibility. We set our target image xt as a fully black image to eliminate any chance it 

resembles a similar image to any of our input images. 
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5. RESULTS  

 

 
Figure 4. ZQBA Eliminating the Top 10 Results 

 

We first present the original Mean Average Precision (mAP) scores for our target black-box 

image retrieval models without any perturbations added to input images on both the Oxford5k 
and Paris6k datasets in Table I. 

 
Table I 

The Original Mean Average Precision (mAP) for Each of the Six Target Black-Box Models 

 
Model Oxford5K Paris6k 

VGEM 85.24 86.28 

RGEM 86.24 90.66 

AGEM 59.86 73.66 

VMAC 81.45 88.31 

RMAC 81.69 83.55 

AMAC 57.11 65.64 

 

In Table II, we then evaluate our attack against the six black-box models and first record the new 

mAP of the IR models with our perturbations added to input images. For the Oxford5k dataset, 
our results show an 85% decrease in mAP on average across all six models as compared to mAP 

of the original models with no perturbations added to input images and a 65% decrease in mAP 

on average across all six models as compared to adding the UAP [19] perturbation to input 

images, highlighting our attack’s ability to disrupt the relevance of our target image retrieval 
models. In addition, our attack is able to successfully subvert the top-5 images of a query 75% of 

the time and the top-10 images 65% of the time on average across both datasets and all models 

compared to a top-5 subversion rate of 52% and a top-10 subversion rate of 48.20% from UAP 
[19] across the same datasets and models, which shows how our attack can be used by an attacker 

to successfully remove relevant images. 
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Table II 

Data from Oxford5k and Paris6k comparing mAP, Relevance-Based Loss (RBL), Top-10 and Top-5 

Knockout (KO) Percentages vs. the Benchmark UAP Approach 

 
 Oxford5k Paris6k 

 mAP RBL Top 10 
KO% 

Top 5 
KO% 

mAP RBL Top 10 
KO% 

Top 5 
KO% 

VGEM         

UAP[19] 41.83 6.41 50.09 54.55 32.4 2.91 76.36 78.18 

ZQBA 6.35 1.40 78.18 81.82 24.41 2.06 61.82 78.18 

RGEM         

UAP[19] 24.46 4.08 47.27 54.55 32.06 3.10 52.73 52.73 

ZQBA 28.07 3.85 41.81 52.73 43.7 2.48 52.73 62.27 

AGEM         

UAP[19] 29.59 8.22 34.54 18.18 38.77 6.35 43.64 50.90 

ZQBA 3.67 0.86 83.63 89.09 11.61 1.63 69.09 80.00 

VMAC         

UAP[19] 35.45 6.07 47.27 52.73 25.31 2.64 78.18 80.00 

ZQBA 3.80 0.90 80.00 85.45 20.98 1.92 63.63 72.73 

RMAC         

UAP[19] 33.41 6.61 41.00 45.45 33.41 3.47 54.55 65.45 

ZQBA 21.42 3.69 49.09 54.55 21.42 2.76 50.90 74.55 

AMAC         

UAP[19] 29.09 8.71 29.09 29.09 41.98 8.24 23.64 30.91 

ZQBA 3.54 0.84 83.63 89.09 11.61 1.61 69.09 80.00 

 

An example ZQBA adversarial query and retrieved results is shown in Figure 4. We further 

analyze our attack’s ability to disrupt relevance from image retrieval models through [20]’s 
relevance-based loss (RBL). A RBL [20] score of 15.612 reveals that the top-10 adversarial 

query results and the top-10 original query results contain the same images in the same order, 

while a score of 0.0 reveals that the adversarial query results and clean query results have no 
overlap in top-10 images. A lower RBL score implies a greater disruption of relevance. Our 

proposed method obtains an average score of 2.00 across all models and datasets compared to 

UAP [19]’s average score of 5.56, highlighting our attack’s ability to disrupt both the rankings 

and relevance of image retrieval models. 
 

6. CONCLUSION  

 

In this paper, we propose a zero-query black-box transferability attack using an ensemble-based 
approach. Unlike previous research, we assume an attack setting where an attacker is unable to 

make multiple queries to an image retrieval model, attempting to overcome the limitations of 

query-heavy image retrieval adversarial attacks. This zero-query requirement significantly 

increases the complexity of crafting a successful attack due to the inability to use information 
from retrieved sets of images but is more representative of a real-world attack situation, where an 

attacker attempts to evade a CBIR system from returning similar images but is unable to submit 

his image more than once. Our ensemble-based adversarial attack utilizes multiple surrogate 
feature-extraction models in a manner that maximizes the distance between the adversarial image 

and original image in embedding space, to ensure attack success, while minimizing the distance 

between the adversarial image and original image in image space, to maintain perceptibility. We 

evaluate these efforts with extensive experimentation, and our results highlight the ability of our 
proposed method to completely disrupt both the relevance and rankings of six different image 
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retrieval models across two datasets. Thus, we hope our attack can serve as a baseline for the 
development of more adversarially-robust image retrieval models in the future. 
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