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ABSTRACT 
 
The work show in this paper progresses through a sequence of physics-based increasing 

fidelity models that are used to design the robot controllers that respect the limits of the 
robot capabilities, develop a reference simple controller applicable to a large subset of 

tracking conditions, which include mostly non-invasive or highly dynamic movements and 

define path geometry following the control problem and develop both a simple geometric 

control and a dynamic model predictive control approach. In this paper, we propose for a 

nonlinear model with disturbance effect, the mathematical modeling of the longitudinal and 

lateral movements using PID with a feed-forward controller. This study proposes a feed-

forward controller to eliminate the disturbance effect. 
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1. INTRODUCTION 
 

For a robot to move around a track while staying within the lane, a PID controller modulization 
accomplished by calculating the velocity and the steering angle that is proportional to the lateral 

distance between the robot and the reference trajectory, which is the error of the cross track [1]. 

Effective speed and steering control across a range of speeds is necessary for the autonomous 
operation of mobile robots, although some of the reviewed, speed and steering automatic 

controllers in the literature have been implemented separately on production robots [2]. For an 

internal electric motor that is controlled by the throttle and steering, we present a design and 

implementation for a simplified adaptive cruise control (ACC) and lane keeping assistance 
(LKA) due to significant engine dynamics nonlinearities [3]. 

 

The lane keeping assistance system is a control system that helps a motorist keep their vehicle in 
a clearly marked highway lane while traveling safely. This system operates when a vehicle 

swerves from a lane, and the LKA automatically corrects the steering without further driver input 

to bring the vehicle back into the lane [4]. On the other hand, a device known as the cruise 
control system regulates and  
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maintains the vehicle's speed at a predetermined point. The driver issues a signal of command. The 

cruise control system sends a control signal to the actuators that control the vehicle's throttle valve. This 

keeps the vehicle's speed constant and controls the fuel injection in the engine [5]. In this paper we are 

using these two concepts in a 4 wheeled robot, in a more streamlined model that combine the notions. 

Industrial automation makes extensive use of independently driven mobile robots with four wheels [6]. 

In order to make the kinematic control study for this robot easier, we decided to treat the robot's 

kinematics like those of a bicycle for lateral movements, assuming that only the front wheel can be 

steered and that both the front and rear wheels are combined into unique wheels at the center of the front 

and rear axles [7]. For longitudinal movements, we treated it like a two wheeled robot, assuming that 

there is neither lateral nor rolling slip [8] [9]. 

Modern automobiles' automatic speed and steering control, also known as cruise control and lane 

keeping system, are typically advised for use at speeds greater than 13m/s and 16 m/s, it is therefore 

challenging to develop a controller for both systems that works well at speeds below 13m/s, most 

actuators have significant torque fluctuations at speeds below 13 m/s, a nonlinear phenomenon that 

causes significant variation in engine speed, crankshaft angular speed and mostly the steering wheel 

rotation angle [10].  

The focal disturbance effect considered in this paper is the road conditions, and the two main challenges 

in designing an effective speed and steering controller are the lack of a complete mathematical model 

that brings together the two systems, and using one feedforward controller to reduce the nonlinear nature 

of the robot dynamics and kinematics in both longitudinal and lateral movements, especially for the 

targeted low speed range of 1-13m/s. Both of these reasons make the use of classical control strategies, 

such as PID Controller not easy [11]. The fundamental idea behind feed-forward control is to measure 

significant disturbance variables and correct them before they disrupt the process in order to improve 

performance. Our system is most affected by road incline and steering effect, especially when the robot 

starts at zero speed, when this disturbance will be taken into account. 

2. KINEMATIC MODELING 

In the kinematic study, only the velocities are taken into account. The motion of a differentially driven 

mobile robot in the simulation is characterized namely by no lateral or longitudinal slippage as the 

kinematic constraints. 

Figure 1 represents the kinematic model for the robot used for this study. 

2.1. Unicycle Representation 

Note {𝑥𝑓 , 𝑦𝑓} a fixed coordinate system and {𝑥, 𝑦} a mobile frame linked to the robot.  

Let 𝑞𝑓 = [𝑥𝑓, 𝑦𝑓 , 𝜃𝑓]
𝑇
 be a point of the coordinate system {𝑥𝑓 , 𝑦𝑓}  and 𝑞 = [𝑥, 𝑦, 𝜃]𝑇 a landmark point 

for {𝑥, 𝑦}. 

Points 𝑞𝑓 and 𝑞 are related by the orthogonal matrix R(𝜃). 

𝑞𝑓 = 𝑅(𝜃) 𝑞 

With:          𝑅(𝜃) = (
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

) 
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Figure 1 Kinematic Robot Model 

•  A  : is the midpoint of the wheel axis. 

• 2R  : represents the diameter of the wheels. 

• 2L  : represents the robot width. 

• �̇�𝑟, �̇�𝑙 : represent the rotational velocity of the right and left wheels, respectively.  

• 𝜃   : is the angle of orientation of the robot. 

2.1.1. Kinematic Constraints 

The movement of the robot is characterized by two non-holonomic stresses that are obtained by two 

assumptions. A non-holonomic constraint is a non-integrable constraint involving the derivative with 

respect to time of the robot's coordinates [12]. If the robot can instantly move forward or backward but 

it cannot move right and left without the wheels slipping, it is said to have a non-holonomic constraint. 

On the other hand, if each wheel is able to move forward and sideways, it is said that this is a holonomic 

behavior of the robot. 

2.1.2. Hypothesis 

• Hypothesis 1: No Lateral Slip: 

This constraint simply means that the robot can only move forward and backward, but not laterally. This 

means that the velocity of the robot associated with point A is zero along the lateral axis in the moving 

coordinate system, i.e.  �̇�𝐴 = 0 

Using the rotation matrix 𝑅(𝜃), the expression of the robot velocity associated with point A in the fixed 

coordinate system is: 

(

�̇�𝐴
𝑓

�̇�𝐴
𝑓

�̇�𝐴
𝑓

) = (
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

)(

�̇�𝐴
0
�̇�𝐴

) 

Then:            {
�̇�𝐴
𝑓
= �̇�𝐴 ⋅ cos(𝜃)

�̇�𝐴
𝑓
= �̇�𝐴 ⋅ sin(𝜃)

 

Thus,          -�̇�𝐴
𝑓
⋅ sin (𝜃) + �̇�𝐴

𝑓
⋅ cos(𝜃) = 0  

• Hypothesis 2: No Rolling Slip: 

Non-slip rolling stress represents the fact that each wheel maintains a point in contact with the ground 

as it is shown in the Figure 2 below. 
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Figure 2 The right wheel 

Thus, the linear velocity of each wheel of the robot at the point of contact P is given by: 

𝑣𝑝𝑟 = 𝑅�̇�𝑟 

𝑣𝑝𝑙 = 𝑅�̇�𝑙 

Where 𝑣𝑝𝑙 is the linear velocity of the left wheel, and 𝑣𝑝𝑟 is the linear velocity of the right wheel. 

The expressions of generalized positions and generalized velocities in the fixed coordinate system as a 

function of the coordinates of point A are given by: 

Right wheel:    {
𝑥𝑝𝑟
𝑓
= 𝑥𝐴 + 𝐿 sin(𝜃)

𝑦𝑝𝑟
𝑓
= 𝑦𝐴 − 𝐿 cos(𝜃)

  =>  {
�̇�𝑝𝑟
𝑓
= �̇�𝐴 + 𝐿�̇� cos(𝜃)

�̇�𝑝𝑟
𝑓
= �̇�𝐴 + 𝐿�̇� sin(𝜃)

 

Left wheel:     {
𝑥𝑝𝑙
𝑓
= 𝑥𝐴 + 𝐿 sin(𝜃)

𝑦𝑝𝑙
𝑓
= 𝑦𝐴 − 𝐿 cos(𝜃)

  =>  {
�̇�𝑝𝑙
𝑓
= �̇�𝐴 − 𝐿�̇� cos(𝜃)

�̇�𝑝𝑙
𝑓
= �̇�𝐴 − 𝐿�̇� sin(𝜃)

 

Using the rotation matrix R(𝜃) and applying it to the right wheel we have: 

(

�̇�𝑝𝑟
𝑓

�̇�𝑝𝑟
𝑓

�̇�𝑓

) = (
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

)(

�̇�𝑝𝑟
�̇�𝑝𝑟

�̇�

) 

With �̇�𝑝𝑟 = 0 means that the velocity at point P of the right wheel is zero (because no lateral slip). Thus 

(

�̇�𝑝𝑟
𝑓

�̇�𝑝𝑟
𝑓

�̇�𝑓

) = (

�̇�𝑝𝑟𝑐𝑜𝑠(𝜃)

�̇�𝑝𝑟𝑠𝑖𝑛(𝜃)

�̇�

) 

We have:           𝑣𝑝𝑟 = �̇�𝑝𝑟 =  𝑅�̇�𝑟 

Thus:          {
�̇�𝑝𝑟
𝑓
cos(𝜃) = �̇�𝑝𝑟 cos

2(𝜃)                                                                 (𝑎)

�̇�𝑝𝑟
𝑓
𝑠𝑖𝑛(𝜃) = �̇�𝑝𝑟 sin

2(𝜃)                                                                   (𝑏)
 

By summing (a) and (b), we can form the equation system of two wheels: 

{
�̇�𝑝𝑟
𝑓
cos(𝜃) + �̇�𝑝𝑟

𝑓
𝑠𝑖𝑛(𝜃) = 𝑅�̇�𝑟

�̇�𝑝𝑙
𝑓
cos(𝜃) + �̇�𝑝𝑙

𝑓
𝑠𝑖𝑛(𝜃) = 𝑅�̇�𝑙
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Hypothesis 1 and 2 and the previous equations produce the following constraints:  

{
 

 −�̇�𝐴
𝑓
⋅ sin (𝜃) + �̇�𝐴

𝑓
⋅ cos(𝜃) = 0

�̇�𝑝𝑟
𝑓
cos(𝜃) + �̇�𝑝𝑟

𝑓
𝑠𝑖𝑛(𝜃) = 𝑅�̇�𝑟

�̇�𝑝𝑙
𝑓
cos(𝜃) + �̇�𝑝𝑙

𝑓
𝑠𝑖𝑛(𝜃) = 𝑅�̇�𝑙

             (1) 

Then we can write: 

𝐴(𝑞)�̇� = 0 

𝐴(𝑞) is the matrix of non-holonomic constraints given by: 

𝐴(𝑞) = (

−sin (𝜃) cos (𝜃)
cos (𝜃) sin (𝜃)
cos (𝜃) sin (𝜃)

  
0 0 0
𝐿 −𝑅 0
−𝐿 0 −𝑅

  ) 

�̇� represents the derivative of the generalized coordinate 𝑞, given by �̇� = [�̇�𝐴, �̇�𝐴, �̇�, �̇�𝑟, �̇�𝑙]
𝑇
 

Then we obtain that the expression of the linear velocities of the right and left wheels at the point of 

contact P is written in the following form: 

{
𝑣𝑝𝑟 = 𝑣𝐴 + 𝐿�̇�

𝑣𝑝𝑙 = 𝑣𝐴 − 𝐿�̇�
 

With 𝑣𝐴 the velocity of the point A, 𝑣𝑝𝑟 is the velocity of the right wheel at point P and 𝑣𝑝𝑙 is the velocity 

of the left wheel at point P. 

Putting: 

{
𝑣 = 𝑣𝐴
�̇� = 𝜔

   Et  {
𝑣𝑝𝑟 = 𝑣𝑟
𝑣𝑝𝑙 = 𝑣𝑙

 

We obtain the expression of the linear velocity 𝑣 and the angular velocity 𝜔 of the mobile robot as a 

function of the rotational velocities of the left wheel �̇�𝑙 and the right wheel �̇�𝑟 

𝑣 =
𝑣𝑟 + 𝑣𝑙
2

= 𝑅
(�̇�𝑟 + �̇�𝑙)

2
 

𝜔 =
𝑣𝑟 − 𝑣𝑙
2𝐿

= 𝑅
�̇�𝑟 − �̇�𝑙
2𝐿

 

In the moving coordinate system, the coordinates of point A are:  

{

�̇�𝐴
𝑟 = 𝑣

�̇�𝐴
𝑟 = 0

�̇�𝐴
𝑟 = 𝜔

                  (2) 

These equations represent the kinematic model of the unicycle robot. 

2.2. Bicycle Model 

The kinematic bicycle model reduces the left and right wheels to a pair of single wheels in the center of 

the front and rear axles, as shown in the Figure 3. 
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Figure 3 Bicycle model 

The wheels are assumed to be side-free and only the front wheels are steerable [7]. By limiting the model 

to motion in a plane, the non-holonomic stress equations for the front and rear wheels are as follows: 

�̇�𝑓 sin(𝜃 + 𝛿) − �̇�𝑓 cos(𝜃 + 𝛿) = 0 

�̇� sin(𝜃) − �̇� cos(𝜃) = 0 

Where (𝑥, 𝑦) is the overall coordinate of the rear wheel, (𝑥𝑓 , 𝑦𝑓) is the overall coordinate of the front 

wheel, 𝜃 is the orientation of the robot in the overall framework, and 𝛿 is the steering angle in the body 

frame. As the front wheel is located at a distance L from the rear wheel according to the orientation of 

the trolley, (𝑥𝑓, 𝑦𝑓) can be expressed as follows, 

𝑑

𝑑𝑡
(�̇�𝑓 sin(𝜃 + 𝛿) − �̇�𝑓 cos(𝜃 + 𝛿)) = 0 

𝑑(𝑥 + 𝐿 cos(𝜃))

ⅆ𝑡
sin(𝜃 + 𝛿) −

𝑑(𝑦 + 𝐿 sin(𝜃))

ⅆ𝑡
cos(𝜃 + 𝛿) = 0 

(�̇� + 𝐿�̇� cos(𝜃)) sin(𝜃 + 𝛿) − (�̇� + 𝐿�̇� sin(𝜃)) cos(𝜃 + 𝛿) = 0 

�̇� sin(𝜃 + 𝛿) − �̇� cos(𝜃 + 𝛿) − 𝐿�̇�(sin2(𝜃) cos(𝛿) + cos2(𝜃) cos(𝛿)) = 0 

�̇� sin(𝜃 + 𝛿) − �̇� cos(𝜃 + 𝛿) − 𝐿�̇�(cos(𝛿)) = 0 

By the elimination of (𝑥𝑓 , 𝑦𝑓), the non-holonomy constraint on the rear wheel, is satisfied by �̇� cos(𝜃) 

and �̇� sin(𝜃) and any multiple scalars of these. This scalar corresponds to the longitudinal velocity 𝑣, 

such that, 

�̇� = 𝑣𝑐𝑜𝑠(𝜃) 

�̇� = 𝑣𝑠𝑖𝑛(𝜃) 

Applying this to the stress on the front wheel gives a solution for �̇�, 

�̇� =
�̇� sin(𝜃 + 𝛿) − �̇� cos(𝜃 + 𝛿)

𝐿 cos(𝛿)
 

�̇� =
𝑣 cos(𝜃) (sin(𝜃) cos(𝛿) + cos(𝜃) sin(𝛿))

𝐿 cos(𝛿)
−
𝑣 sin(𝜃) (cos(𝜃) cos(𝛿) − sin(𝜃) sin(𝛿))

𝐿 cos(𝛿)
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�̇� =
𝑣(cos2(𝜃) + sin2(𝜃)) sin(𝛿))

𝐿 cos(𝛿)
 

�̇� =
𝑣(tan(𝛿))

𝐿
 

The instantaneous radius of curvature R of the robot determined from 𝑣 and leads to the previous 

introduction �̇�, 

𝑅 =
𝑉

�̇�
 

𝑣(tan(𝛿))

𝐿
=
𝑣

𝑅
 

tan(𝛿) =
𝐿

𝑅
 

⌊

�̇�
�̇�

�̇�
�̇�

⌋ =

⌊
 
 
 
 
cos(𝜃)

sin(𝜃)
tan(𝛿)

𝐿

0 ⌋
 
 
 
 

𝑣 + ⌊

0
0
0
1

⌋ �̇�              (3) 

Where 𝑣 and �̇� are respectively the longitudinal velocity and the angular velocity of the steering wheel. 

2.3. Dynamic Modeling 

In this first part any depreciation is neglected [9]. As a model with one degree of freedom we are only 

interested in the translational movement of the robot. 

The potential energy of the robot:  

𝐸𝑝 = 𝐸𝑃𝑃 + 𝐸𝑃𝑒 = 𝑚𝑔𝑥 +
1

2
𝑘𝑥2 

The kinematic energy of the robot: 

𝐸c =
1

2
𝑚�̇�2 

Applies the Lagrange formalism, we find by applying the Laplace transform:  

𝑚𝑠2𝑥 +𝑚𝑔 + 𝑘𝑥 = 0 

Then the transfer equation is of the form:  

𝐺⌊s⌋ = 𝑥(𝑠) =
𝑚𝑔

𝑘⁄

𝑚
𝑘
𝑠2 + 1

                                                                   (4) 

3. CONTROL 

The basic concept of feed-forward control is to measure important disturbance variables and take 

corrective action before they disrupt the process in order to improve the performance result.  
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Figure 4  Advance control 

If we break down the advance control into different stages, we obtain a thorough and comprehensive 

analysis of the planning and control system, a regular review of the system for input variables and 

interrelationships for a consolidated result, a collect data on input variables and synchronize them with 

the developed system, regularly analyze variations in actual input data compared to planned inputs and 

assess their effect on the expected result and a based on the analysis, take corrective actions to align 

planned and actual trajectories.  

The main disturbance that acts on our system is the inclination of the road and the effect of the steering, 

especially when the robot starts at zero velocity, this disturbance is taken into account. Figure 5 shows 

an anticipatory control system, in which disturbances are measured and compensatory control actions 

are taken by the anticipatory controller. 

 

Figure 5 Block scheme for anticipation control 

3.1. Representation of Dynamic Disturbances 

The controller adjusts the motor torque gain to increase or decrease the motor drive force 𝐹𝑑 in response 

to the command signal, which is the reference velocity, and the speed sensor's feedback signal. The 

longitudinal elements of the vehicle as administered by Newton's low is 

𝐹𝑑 = 𝑚
ⅆ𝑣

ⅆ𝑡
+ 𝐹𝑎 + 𝐹𝑔 
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𝑚
ⅆ𝑣

ⅆ𝑡
 is the inertia force, 𝐹𝑎 is the aerodynamic resistance, 𝐹𝑑  the driving force of the engine and Fg is 

the resistance to rise (or the force of descent).  

𝐹𝑔 = 𝑚𝑔 𝑠𝑖𝑛 𝜃 

𝐹𝑎 = 𝑐𝑎(𝑣 − 𝑣𝑤)
2 

𝑣𝑤 is the velocity of the wind thrust, 𝑀 is the mass of the carriage robot, 𝜃 is the slope of the road and 

𝑐𝑎 is the coefficient of aerodynamic resistance.  

Planning the direct control of this system starts with simplifying the model. Consideration is being given 

to setting all initial conditions to zero. 

�̇� =
1

𝑚
(𝐹𝑑 − 𝐶𝑎𝑣

2) 

𝑇𝐿(�̈�) = 𝑇𝐿 (
1

𝑚
⋅ (�̇�𝑑 − 2𝑐𝑎𝑣�̇�)) 

X𝑠3 =
1

𝑚
⋅ (𝑠𝐹𝑑 − 2𝑐𝑎 ⋅ 𝑋

2𝑠3) 

X=
𝑐𝑎

𝑚
(−1 + √1 −

𝑚𝐹𝑑

𝑠𝑐𝑎
) 

The basic concept of advance control (FF) is to measure important disturbance variables and take 

corrective action before they disrupt the process to improve performance. Especially when the robot 

starts at zero velocity, this disturbance will be taken into account. 

A feed-forward control of the direct-acting control system is illustrated in the simulation part shown at 

the end of this article, where the disturbances are measured, and the compensatory command actions are 

taken by the direct-acting controller. Deviations in controlled variables can be calculated as follows: 

𝛥𝑣 = 𝐺𝑝 ⋅ 𝐺𝐹𝐹 + 𝐺0 = 0 

𝐺𝐹𝐹 = −𝐺𝑝
−1 ⋅ 𝐺0 

With           𝐺𝑃 =
𝑐𝑎

𝑚
(−1 + √1 −

𝑚𝐹𝑑

𝑠𝑐𝑎
)              (5) 

Et               𝐺0 =
𝑚𝑔

𝑘⁄

𝑚

𝑘
𝑠2+1

                     (6) 

So, we find:  

𝐺𝐹𝐹 = (
𝑚

𝑐𝑎(1−√1−
𝑚𝐹𝑑
𝑠𝑐𝑎

)

) ⋅ (
𝑚𝑔

𝑘⁄

𝑚

𝑘
𝑠2+1

)             (7) 

 

Figure 6 Dynamic robot model 
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3.2. Direct Kinematic Model (DKM) 

The direct kinematic model allows us to know the Cartesian velocities (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) of the tool and the 

rotational velocity vector (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧) of the tool coordinate system as a function of the positions and 

angular velocities of the axes. 

From the kinematic modeling we found that: 

𝑣 = �̇�𝑟 =
𝑣𝑑 + 𝑣𝑔

2
= 𝑅

�̇�𝑑 + �̇�𝑔

2
 

𝜔 = �̇� =
𝑣𝑑 − 𝑣𝑔

2𝐿
= 𝑅

�̇�𝑑 − �̇�𝑔

2𝐿
 

From these equations we can build our direct kinematic model (DKM) under Simulink/Matlab 

 

Figure 7  Direct kinematic model 

3.3. Kinematic Model in the Robot Posture and the Lateral Control for Robot Orientation  

We have modeled the equations �̇�, �̇� et �̇�, note that 𝛾 the angle that makes the frame with the x-axis, 

and 𝜃 the steering angle for the robot. 

�̇� = 𝑣𝑐𝑜𝑠(𝜃), �̇� = 𝑣𝑠𝑖𝑛(𝜃), �̇� =
𝑣

𝐿
𝑡𝑎𝑛(𝛾) 

�̇� = 𝜔𝑚                 (8) 

 

Figure 8  Block diagram corresponding to the unicycle model 

In Simulink which allows us to have the velocities �̇�, �̇� from 𝑣 and 𝜃. 

 

Figure 9 Kinematic model in robot posture 
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3.4. Inverse Kinematic Model (IKM) 

The inverse kinematic model allows to switch from operational velocities 𝑣 and �̇� to the velocities of 

each wheel. 

The following equations are accepted: 

�̇�𝑑 =
𝑣 + 𝐿𝜔

𝑅
                                                                              (9) 

�̇�𝑔 =
𝑣 − 𝐿𝜔

𝑅
                                                                            (10) 

From these relationships we can build our inverse kinematic model in Simulink. 

 

Figure 10 Inverse Kinematic Model 

3.5. Actuator Modeling 

DC motors are used to drive the wheels of our robot which are considered to be the actuators. The 

equations of a DC motor are the equation of: 

The electrical circuit with the counter-electromotive force 

𝐿
ⅆi

ⅆ𝑡
+ 𝑟i = 𝑢 − 𝑣𝑏 

The electromotive force 

𝑣𝑏 = 𝑘𝑏𝜔𝑚 

The torque produced by the engine 

𝜏𝑚 = 𝑘i 

Newton's second law for the motor shaft 

𝐽�̈� + 𝑓𝜔 = 𝜏𝑚 − 𝜏 

The gear ratio  

𝜔𝑚 = 𝑁𝜔𝑅 

The voltage 𝑢 is used as the input of the motor, 𝑖 is the armature current, the strength and inductance of 

the armature winding are respectively (𝑟, 𝐿). We consider 𝑣𝑏 the electromotive force, 𝜔𝑚 is the angular 

velocity of the robot and 𝜏𝑚 is the torque of the motor. 

The torque constant and the electromotive force constant are respectively (𝑘, 𝑘𝑏). 𝐽 is the inertia of the 

engine and 𝑓 is the damping coefficient. 𝑁  is the reduction ratio 

Table 1 shows the DC motor parameters and specifications that meet our robot design specifications 

Table 1 DC motor parameters and specifications 

Parameter Value 

𝑟 (Ω) 0.8 

𝐿 (𝐻) 0.011 

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.1, February 2023

89



𝐽 (𝐾𝑔. 𝑚²) 0.2 

𝑘 (𝑚.𝑁/𝐴) 0.4 

𝑘𝑏 (𝑉. 𝑠/𝑟𝑎𝑑) 0.4 

𝑁 31.4 

Below, in Figure 11, the Simulink model of the DC motor mathematical model. 

 

Figure 11  Modeling of motor actuators 

With assembling all pieces and putting them in place, now we can determine the complete model of 

our robot. 

 

Figure 12 Unicycle Model 

4. LONGITUDINAL AND LATERAL CONTROL OF THE ROBOT MOVEMENT 

PID controller is a way to regulate an application to smoothly follow a value or a specific path. Although 

a full explanation of an application can be extensively complex, it summarized the math behind it in a 

super elegant and concise way and made the idea can easily extended to many real-world problems. In 

this chapter, we will follow the key structure of a PID controller. 

4.1. Longitudinal Control 

Longitudinal controller work in this case as a lane-keeping assist system, and it’s designed to keep the 

vehicle in between two lanes. If the vehicle veers out of a lane, the controller must return the vehicle to 

its original position. Therefore, the goal of the PID controller is to reduce the amount of yaw error that 

occurs between the vehicle's heading and the centerline of the lane. The numerical model of PID 

regulator given by the mixed form of the PID transfer function written in the form shown here. 

𝑢(𝑡) = 𝑘𝑝ⅇ(𝑡) + 𝑘𝐼∫ ⅇ(𝑡) ⅆ𝑡
𝑡

0

+ 𝑘𝐷ⅇ̇(𝑡) 

4.2. Lateral control 

Pure tracking is the geometric trajectory tracking controller. A geometric path tracking controller is a 

controller that follows a reference trajectory using only the geometry of the carriage kinematics and the 

reference trajectory. The pure tracking controller uses an anticipation point which is a fixed distance on 
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the reference trajectory forward of the carriage as follows. The carriage must move towards this point 

using a steering angle that we must calculate. 

 

Figure 13 Pure Pursuit geometry 

In this method, the center of the rear wheel is used as a reference point on the robot. The target point is 

selected as the red point in the figure above. And the distance between the rear axle and the target point 

is denoted 𝑙𝑑. Our goal is to get the robot to a correct angle and then get to that point. The figure of 

geometric relationship is therefore as follows, the angle between the heading of the robot body and the 

line of sight is designated by �̇�. Because the robot is a rigid body and moves around the circle. The 

instant center of rotation (ICR) of this circle is shown as follows and the radius is denoted by R. 

 

Figure 14 The angle between the carriage body heading and the line of sight 

From the law of sines, we have 

𝑙𝑑

sin(2�̇�)
=

𝑅

sin (
𝜋
2 − �̇�)

 

𝑙𝑑

2𝑠𝑖𝑛(�̇�) 𝑐𝑜𝑠(�̇�)
=

𝑅

𝑐𝑜𝑠(�̇�)
 

𝑙𝑑

𝑠𝑖𝑛(�̇�)
= 2𝑅 

Thus 

𝑅 =
𝐿

𝑡𝑎𝑛(𝛿)
 

The steering angle 𝛿 can therefore be calculated as follows: 

𝛿 = 𝐴𝑟𝑐𝑡𝑎𝑛(
2𝐿𝑠𝑖𝑛(�̇�)

𝑙𝑑
) 

The pure tracking controller is a simple control. It ignores dynamic forces acting on the robot and 

assumes that the no-slip condition holds at the wheels. Also, if the controller is set for low speed, it 

would be dangerously aggressive at high velocities. An improvement is to vary the anticipation distance 

𝑙𝑑 according to the velocity of the robot. 

ICR 
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To simplify the adjustment, the control law can be rewritten by scaling the anticipation distance 

according to the longitudinal velocity of the vehicle. Scaling the monitoring distance in this way is a 

common practice. In addition, the monitoring distance is usually saturated to a minimum and maximum 

value. In our case, these values are set at 1m and 3m respectively. It follows that the experiments are 

conducted on the lane change path. 

       𝛿 = 𝐴𝑟𝑐𝑡𝑎𝑛(
2𝐿𝑠𝑖𝑛(�̇�)

𝐾𝑓𝑓⋅𝑣
)             (11) 

4.3. Setting of gains 'Ziegler Nichols Method' 

The following is a breakdown of how each of the PID terms gains and govern the response of the 

regulator which is denoted by 𝑢(𝑡) and affects the steering angle of the robot: 

• Proportional component:  

When used by itself to calculate the steering angle, the proportional term produces a steering angle that 

is proportional to the Cross Track Error. On the other hand, it fluctuates around the reference trajectory 

as a result. The robot's rate of oscillation (or overshoot) around the reference trajectory is determined by 

the proportional coefficient (𝑘𝑃). 

• Derivative component: 

The proportional component's overshoot is minimized by the derivative component by employing a rate 

of change of error. The robot's overshoot, or oscillation amplitude, distance from the reference trajectory 

can be optimized using this derivative coefficient (𝑘𝐷) term. 

• Integral component: 

Systematic bias causes errors in the steering angle over time, which could eventually, but not 

immediately, cause the robot to leave the track. This issue is corrected by the integral component. The 

integral coefficient (Ki), which has a significant impact on the performance as a whole, should be 

carefully optimized in small steps because this component affects the error over time. 

The Kp, Ki and Kd values could be manually adjusted through trial and error, but it would take a long 

time to get the robot to move smoothly around the track. Using an algorithm like twiddle to automatically 

tune the parameters is another option. While this might be the best strategy, it requires some time and 

effort to implement the algorithm. We chose a tuning method that was easier to use than the previous 

two: by comprehending the interdependencies of Kp, Ki, and Kd. We used the Ziegler-Nichols method 

and the equations in Table 2 below to select only two parameters to calculate the Kp, Ki, and Kd terms. 

First, the integral action and the derivative action are canceled. The proportional action is increased until 

the output signal of the closed loop oscillates steadily. This gain is then noted 𝑘𝑈, This is the maximum 

gain (or critical gain). We note 𝑇𝑢 the period of oscillation of the signal. The parameters of the controller, 

𝑘𝑃, 𝑇𝐼 and 𝑇𝐷 are chosen according to the following table. 

Table 2 Ziegler Nichols' method 

Controller 

type 
𝒌𝑷 𝑻𝑰 𝑻𝑫 𝒌𝑰 𝒌𝑫 

P 0.5𝑘𝑈     

PI 0.45𝑘𝑈 𝑇𝑈/1.2  0.54𝑘𝑈/𝑇𝑈  

PD 0.8𝑘𝑈  𝑇𝑈/8  𝑘𝑈𝑇𝑈/10 

PID 0.6𝑘𝑈 𝑇𝑈/2 𝑇𝑈/8 1.2𝑘𝑈/𝑇𝑈 3𝑘𝑈𝑇𝑈/40 
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According to the modeling equations we have 𝑘𝑈 =  𝑚𝑔
𝑘⁄
 and  𝑇𝑈 = 𝑇 =

2𝜋

𝜔
 while 𝜔 = √

𝑘

𝑚
  

𝑘𝑈 = 6.54 and 𝑇𝑈 = 5.13s 

So, we find that 𝑘𝑃 = 3,94 ; 𝑘𝐼 = 1,52 ; 𝑘𝐷 = 2,51 

5. SIMULATIONS AND INTERPRETATIONS 

Many tests have done to examinate the fidelity of this system, we are considering several initial values 

to show the simulated system using PID controller with feed-forward cancelling the effect of the 

disturbance from the road and figure 16 shows how is the system signal if we used the PID controller 

and if we did not use the PID controller it show that the signal is speed up under the reference speed but 

with PID controller it still in near the reference speed with small error. Figure 17 illustrates the real 

system signal during the driving on the flat and up and down hill with using PID controller without feed-

forward and with feed-forward controller with 10m/sec reference speed. Table 3 shows the controller 

parameters and specifications that meet our design specifications. 

Table 3 Controller Parameters 

Parameter Value 

𝑘𝑃 3,94  

𝑘𝐼 1,52  
𝑘𝐷 2,51 

𝑘𝑓𝑓 0.0022 

5.1. Absence and Presence of Controllers 

Starting with the case where we do not have any type of controllers, giving 2.5m/s as the velocity 

reference generated by a pulse generator with 0.5rad as the steering angle, Figure 17 shows that the 

motors lose control, and the robot does not follow the reference. However, in the presence of the 

controllers we can notice that the velocity and intended angle serve as a reference for all cases and the 

results show us the significant rule of our controllers by demonstrating the stability of the system.  

 

Figure 15 Presence of controllers 
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Figure 16  The real system with and without PID controller 

5.2. Absence and presence of feedforward 

The simulation in Figure 16 shows how the PID controller with feed-forward cancels the effect of the 

disturbance from the road incline and illustrates the real system signal and trajectory during the robot 

displacement, as well as the system without using any feedforward system to show how this disturbance 

can affect the trajectory of the robot. Many experiments have been conducted to obtain the best results 

for the comprehensive system of the two systems, ACC and LKA of the robot. 

 

 
Figure 17  The real system with and without Feedforward controller 
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6. CONCLUSION AND FUTURE WORK 

In conclusion, the mathematical unified model for the simplified ACC and LKA systems has been 

effectively derived inside this study by the implementation of a track algorithms for the ego-

vehicle. The parameters for the PID and Feed-forward controllers that fulfill the system 

requirements are estimated, and the effect of disturbance from the incline road is simulated. 

However, in order to quantify the results, all of the responses were compared. Though, because 

the model outperformed previous control strategies, more advanced control systems will be used 

to test it in subsequent research. 
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