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ABSTRACT 
 
This paper presents a newly-created Barracuda open-source framework which aims to parallelize Java 

divide and conquer applications. This framework exploits implicit for-loop parallelism in dividing and 

merging operations. So, this makes it a mixture of parallel for-loop and task parallelism. It targets shared-

memory multiprocessors and hybrid distributed shared-memory architectures. We highlight the 

effectiveness of the framework and focus on the performance gain and programming effort by using this 

framework. Barracuda aims at large public actors as well as various application domains. In terms of 

performance achievement, it is very close to Fork/Join framework while allowing end-users to only focus 

on refactoring code and experts to have the opportunity to improve it.  
 

The barracuda main code implementation is available at https://github.com/boya2senghor/Barracuda 
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1. INTRODUCTION 
 

In the context of multi/many cores era with an exponential growth, parallel thinking, learning, 

designing, programming, computing, debugging, and so on, should be the new paradigms. 
Supercomputer, grid computing, desktop computer, smartphones, embedded computer, and so on, 

are all equipped with multicore processors. Mathematical, thermodynamics, climate science, 

aero-spatial, graphical processing applications, and so on, are all computing-intensive.   

Operating systems (Windows, Linux, Unix,..), runtimes and system executors (gcc, jre,…), 
languages (c/c++, java, matlab, cilk, fortran), compilers and built-in API (openMP, MPI) all 

provide with facilities to leverage the underlying multicores architecture. However, most scholar 

academic, developers, companies still continue focusing their effort in sequential learning, 
programming, computing paradigms.      

 

Now, the actual and great challenge is to develop efficient strategies in order to convince those 

communities to adopt parallel programming paradigm. This one basically includes data (or loop) 
parallelism and task (method) parallelism algorithms. The main papers, tools, frameworks mostly 

focus on the first one. Nevertheless, in this paper we approach the task parallelism specially the 

divide and conquer algorithm.  
Many applications (mergesort, quicksort, dichotomy searching, Fibonacci, integrate, strassen 

matrix multiplication,…) in various scientific fields (numerical sorting and searching, 

mathematical calculation, image processing, etc.) rely on divide and conquer algorithm.   

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120206
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We use Java as target language, compiler and runtime. Java is the most widespread platform 
ranking from supercomputers to smartphones.  Java supplies as well primitives as advanced 

libraries and API for developing parallel programs. For non-expert parallel programmer, one of 

the best way to deal with divide and conquer is to use high level API such as Fork/Join 

framework [7][9]. Using primitives API such as threads, runnable, synchronization is a domain 
reserved for experts.  

 

In this paper, we propose a newly-created open source framework, we name Barracuda. This 
framework is purely built around Java primitives API and is aimed at both end-users and experts. 

End-users focus their effort simply in the copy-past-replace-comment out action according an 

operating mode. He does not need to deeply know the concept of parallel programming. The 
expert, however, may reuse this framework and improve it, in terms of performance outcome and 

build high level API.  

 

The core implementation of the framework consists of more than nine (9) functions and two (2) 
internal classes. The functions are classified in three functionalities which are dividing, 

processing and merging. The first internal class encapsulates the parameters and result of the 

current recursive method in the same object. The second one implements a runnable object, we 
call task.  

Task parallelism relies on light thread management. Furthermore, work stealing algorithm is used 

in order to avoid a thread being idle while there are some tasks remaining in certain queues. That 
strategy improves the overall performance. Parallelizing compilers like openMP [1][3] supplies 

task parallelism , API and environment variables. 

 

Intel TBB[6][10]  supplies API to deal with divide-and-conquer algorithm. In habaneroJava[4], 
the asynch/finish concept is used to parallelize divide-and-conquer. HabaneroJava is an extension 

of the Java language and is introduced as a course at Rice University. 

 
In [2], authors implement a framework relying on TBB, OpenMP and TaskFlow which deal with 

divide-and-conquer, aiming to reduce programming effort and improving performance. 

 

One of the difficulties to be addressed with parallel recursive application is how to leverage the 
hybrid distributed shared-memory multiprocessors architectures. Most of the frameworks 

[27][28] are fitted to only target shared-memory multiprocessors architecture. Nevertheless, some 

frameworks like in [29], are designed and implemented to exploit both shared memory and 
cluster architectures. Our framework, in the fact that it explicitly divides task in subtasks which 

are stored in an array, potentially offers the possibility to schedule and distribute subtasks over 

nodes of cluster or hybrid distributed shared-memory architecture.  
 

The sequential consistency, performance gain and programming effort are the core of the parallel 

programming. In our framework, when the instructions are strictly followed, it guarantees 

sequential consistency that is a necessary but not sufficient condition. However, it’s not worth 
parallelizing an application if we may not obtain performance gain compared to sequential one. 

Our framework allows performance gain and tends to reduce programming effort. 
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2. FRAMEWORK DESCRIPTION 
 

2.1. Framework Architecture and Implementation 
 

 
 

Figure 0:  Barracuda Architecture 

 

The main architecture of Barracuda highlights the process of extracting dividing and merging 
function from the input sequential recursive method. End-user and programmer focus their effort 

in that extracting process.  Barracuda provides with for-loop parallelization for those functions. 

Other built-in functions and internal classes make up the framework. No intervention from the 

end-user is required for those functions. 
 

 
 

Figure 1.a:  Top-Down Matrix of ranges perspective    Figure 1.b:  Tree of ranges ‘perspective 

 
The second and third figures (Fig1.a, Fig1.b) describe the process of dividing a 2-way recursive 

method. 

 

 range_brcd is made up of recursive method ‘s formal parameters and result (if so) variables. 
In general purpose algorithm[2], problem (parameter) an result (return, if so) are managed 

separately. We decide to encapsulate problem and result in the same object we name 

range_brcd. From a matrix perspective, it represents an element or cell. From a tree 

perspective, it represents a node (parent or child). 
 

 step_brcd: from a matrix perspective, it represents a row index and from tree perspective, it 

represents the level of a same generation of nodes (parents or children).  

 

 rangeArray_brcd: from a matrix perspective, it represents a row of ranges. From a tree 
perspective, it represents a generation of nodes. 
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 rangeArrayList_brcd: from a matrix perspective, it represents itself the matrix (two-

dimensional array). From a tree perspective, it represents the tree itself or a set of node 
generations. 

 

 The framework skeleton is built around more than nine (9) functions and two (2) internal 

classes. However, parallel dividing and parallel merging supply additional functions and 

internal classes. 
 

 divide_brcd(…): In the framework, this function has empty content and must be customized 

by user. The content of the recursive method will be copied into this function. The called 

recursive method will be replaced by operation of adding generated range_brcd into  
rangeArray_brcd of the next step_brcd (equal current step_brcd+1 position). 

 

 finalDivide_brcd(…): This function traverses the matrix and for each step, traverses the 

columns, and for each cell divides it into k_way_brcd range_brcd (into k ranges). In 
addition, these ranges are added to the rangeArray_brcd array corresponding to 

“step_brcd+1”. At the end, this function generates a triangular matrix of ranges. To divide 

each range, this function calls divide_brcd. The way to divide each range depends on the 

recursive method. The numOfTasks specified by the end-user determines the cut-off 
parameter and impacts the number of the steps in dividing process:  

 

 int numOfSteps_brcd = (int) (log(numOfTasks_brcd) / log(k_way_brcd)); This function 

is built by the framework. No effort (refactoring) is needed from the programmer. 
 

 parallel_finalDivide_brcd (…)  is the parallel implementation of finalDivide_brcd(…). 

Parallelization is done in phases. This function is built by the framework. No effort 

(refactoring) is needed from the programmer. 
 

 setTasks_brcd(…) The rangeArray_brcd corresponding to the last step_brcd position is 

considered (represented by queue) . This array will be considered as a global resource or 

queue to be shared by next threads workThread_brcd. A cursor_brcd implementing 

atomicInteger counter (which is a non-blocking synchronisation) allows safely moving from 
an index of that array to another. This function creates as many tasks as there are 

workerThread_brcd. This defines how our queue is managed. Compared with work 

stealing queue [11] [12] [13] [14] management where each processor has its own queue, we 
have a unique queue shared among processors. One of the goal of work stealing is to avoid 

that a processor after ending up running its own queue, stay idle while some processors have 

tasks remaining in their queue. In our sharing queue implementation, as long as tasks remain 
in the queue, no processor will be idle. From this perspective, those two strategies produce 

the same result. We instantiate as tasks as the number of threads specified by the end user or 

by default the underlying runtime. We use primitive threads for processor execution and 

runnable interface for task implementation. This function is built and fully implemented by 
the framework. No effort is required from the programmer. 

 

 forkJoin_brcd(…): for each task_brcd previously created, this function maps a 

workerThread_brcd. The main thread launching this function starts the different 
workerThread_brcd and waits for them until they end their execution. Here we use primitive 

fork-join synchronisation. This function is a built by the framework. No effort is needed 

from the programmer. 
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Figure 2: Shared queue management 

 

• merge_brcd(…): Like divide_brcd, this function needs to be defined by the user. He simply 

replaces the called recursive method   by the operation of recovering result in,  for each 

range_brcd.  This operation is made easier by the fact that we encapsulate parameters and result 
in the same range_brcd. We describe the effort of the programmer to customizing this function 

later. 

 
• finalMerge_brcd(…): this function is a bottom-up operation where, by a group of k_way_brcd, 

it merges their result and put it in their up parent corresponding range_brcd. This function 

traverses the matrix from bottom-up and iterates over the rows of the matrix. For each row, the 
k_way_brcd  adjacent range_brcd are taken, in parameters by the merge operation and the result 

is post (composed) in their parent range_brcd result. At the end, the final result (the 

rangeArray_brcd or the original range_brcd) is obtained. This function is  built by the framework. 

No effort (refactoring) is needed from the programmer. 
 

• parallel_finalMerge_brcd(…)   is the parallel implementation of finalMerge_brcd( (…). 

Parallelization is done in phases. No effort (refactoring) is required from the end-
user/programmer. 

 

• compute_brcd(…): this function is the parallel function of the recursive method. It calls all 
method previously defined.  range_brcd is the original actual parameter of the recursive function. 

numThreads_brcd is the number of worker threads to be executed. numOfTasks_brcd is a number 

of tasks the user wants the problem be divided up before starting task parallel execution. 

k_way_brcd is the k_way recursive method invocation. 
 

 
 

Figure 3.a:  Bottom-up Matrix of ranges Figure 3.b:  Bottom-up Tree of ranges 

 

Fig3.a and Fig3.b describe the process of merging a 2-way recursive method. 
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2.2. Framework Functionalities 
 

The framework presents the following functionalities: 

 

 Transforming a sequential code to parallel one that can leverage the shared-memory 
multiprocessor architecture. 

 Transforming a pure task parallelism code into a mixture of for-loop parallelism and 

recursive task-parallelism code. 

 Running the parallel code by having the ability to influence the performance via the 

number of partitions obtained from dividing operation. 

 In the context of hybrid distributed architectures which nodes are shared-memory 
multiprocessor, resulting tasks from dividing operation are distributed to different nodes. 

 Giving the user the opportunity to customize the parallel code and add additional code. 

 

2.3. Operating Mode and programmer Effort 
 

The programming effort is reduced to copy-past-replace operation. Programmer does not need to 

be parallel programmer expert. 
 

a) Copy the content within the block of DivideAndConquer_BRCD class and insert it just 

after the recursive method block. 

b) Copy and paste formal parameters and (if so) return variable declarations of the 
recursive method within the Range_brcd class. Declare a “Range_brcd() “constructor 

with recursive method formal parameters as formal parameters; 

c) Within “run()” method of “Task_brcd” class , call recursive method with actual 
parameters preceded by "rangeArray_brcd[i]."  ; If the recursive method returns, prepend 

“rangeArray_brcd[i].result=” to the statement;                    

d) Copy and paste the content of k-way recursive method content within divide_brcd() 
function; prepend "range_brcd." to the original formal parameters by replacing “return 

[variable]” by return. Replace any called recursive method by "        

rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd (...))". Comment 

out the following code immediately after the last called recursive method. 
e) Copy and paste content of k-way recursive method within merge_brcd() function. 

Prepend "range_brcd." to the original formal parameters and replace “return” by 

"range_brcd.result=". Replace any called recursive method by  " 
rangeArrayList_brcd[step_brcd][++indexOfRange_brcd].result”; 

f) Comment out the called main recursive method. Declare a “new range_brcd(…)” with 

the actual parameter of the called recursive method; Call the “compute_brcd(…)” 
method with range_brcd , number of threads, number of tasks and k-way actual 

parameters. Set “range_brcd.result” into the “result” variable. 

 

3. EFFECTIVENESS AND IMPACT 
 

3.1. Illustrative Example 
 

In this example, we illustrate framework’s application upon Fibonacci. Only functions and 
classes to be modified are shown. First, download the framework from 

https://github.com/boya2senghor/Barracuda. Follow instructions from section 2.3. The classes and 

functions to be modified are static class Range_brcd{…}, class Task_brcd implements 

Runnable{…}, public void divide_brcd(..){…}, public void merge_brcd(…){…}. 
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/*package and import*/ 

public class Fibonacci {     

    public long fibonacci(int n) { 

        if (n == 0)  return 0;       

        if (n == 1)   return 1;         

        long x, y; 

        x = fibonacci(n - 1); 

        y = fibonacci(n - 2); 

        return x + y; 

    }     

    /** Operating mode : a)    **/    (Follow instruction a) from section 2.3) 

       static class Range_brcd { 

/** Operating mode : b)    **/        (Follow instruction  b) from section 2.3) 

        int n; 

        long result;         

        Range_brcd(int n){ 

            this.n=n; 

        } 

    } 

    class Task_brcd implements Runnable { 

      /*code*/ 

        public void run() { 

            try { 

                while (true) { 

                    int i = cursor_brcd.getAndIncrement();    //cursor management by non-blocking synchronization                 

                    /** Operating mode : c)    **/       (Follow instruction from c) in section 2.3)              

                   rangeArray_brcd[i].result=fibonacci(rangeArray_brcd[i].n);                     

                } 

            } catch (Exception e) { 

            } 

        } 

    } 

public void divide_brcd(Range_brcd range_brcd, Range_brcd[][] rangeArray_brcd, int step_brcd, int indexOfRange_brcd)  
{ 

/** Operating mode : d)    **/      (Follow instruction d) from section 2.3) 

         if (range_brcd.n == 0)  return;        

        if (range_brcd.n == 1)    return; 

        //long x, y; 

        //x = fibonacci(n - 1);  //this statement is commented out and replaced by the following statement 

        rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd(range_brcd.n - 1); 

        //y = fibonacci(n - 2);  //this statement is commented out and replaced by the following statement 

        rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd(range_brcd.n - 2); 

       //return  x + y;          //this statement is commented out 

    } 

    public void merge_brcd(Range_brcd range_brcd, Range_brcd[][] rangeArrayList_brcd, int step_brcd, int 

indexOfRange_brcd) {  

/** Operating mode : e)    **/ (Follow instruction  e) from section 2.3) 

        if (range_brcd.n == 0)  {range_brcd.result=0; return ;} 

        if (range_brcd.n == 1)  {range_brcd.result=1; return ; } 

        long x, y; 

        //x = fibonacci(range_brcd.n - 1);        

        x=rangeArrayList_brcd[step_brcd][(++indexOfRange_brcd)].result; 

        //y = fibonacci(range_brcd.n - 2);        

        y=rangeArrayList_brcd[step_brcd][(++indexOfRange_brcd)].result; 

        //return x+y 

        range_brcd.result=x + y;         

    } 

/*Other required Barracuda method which do not need any modifications*/ 

    public static void main(String args[]) { 

        final int n = 45; 

        Fibonacci fib = new Fibonacci(); 

/** Operating mode : f)    **/ (Follow instruction f) from section 2.3) 

        //long z = fib.fibonacci(n); 

        Range_brcd range_brcd=new Range_brcd(n); 

        fib.compute_brcd(range_brcd, 4, 32, 2); 

        long z=range_brcd.result; 

    }      

 

} 
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3.2. Performance Evaluation 
 

We evaluate and compare the performance of our framework with fork-join framework by 

running quicksort, mergesort, fibonacci, strassen matrix multiplication, integrate programs over 
an IBM System X 3650 with the following characteristics: 

 

 8 cores processors , 8 GB memory; 

 Fedora 25 operating system; 

 Java 1.8.0 runtime 

 
Each of these programs is both parallelized using Barracuda and ForkJoin. An experiment 

execution consists of running one parallel program in target environment. We repeat 10 times 

each experiment and consider the average execution time. It’s also important to note that for each 

program the best cut-off [15] [16] [17] [18] [19] [20] [21]is retained. At the end of the 
experimentation, we present the outcomes in the following tables. 

 
Table 1.  Barracuda vs. ForkJoin performance over Quicksort 

 
Quicksort 

 workload Cut-Off Execution time(ms) Performance 

Barracuda N=320x106 log2 (numOfTasks)=10 4862,0 lost: -7% 

ForkJoin  (right-left)<300x103 4512,0  

 
Table 2.  Barracuda vs. ForkJoin performance over Mergesort 

 
Mergesort 

 Workload Cut-Off Execution time(ms) Performance 

Barracuda N=160M log2(#tasks)=4 6084,0 lost:-2% 

ForkJoin  (right-left)<4999999 5979,0  

 
Table 3.  Barracuda vs. ForkJoin performance over Fibonacci 

 
Fibonacci 

 Workload Cut-Off Execution time(ms) Performance 

Barracuda N=50 log2(#tasks)=18 20877 gain=+2% 

ForkJoin  (n<30) 21305  

 
Table 4.  Barracuda vs. ForkJoin performance over Strassen 

 
Strassen Matrix Product 

 Workload Cut-Off Execution 

time(ms) 

performance 

Barracuda N=4096 log7(#tasks)=1 12556 gain=+4% 

ForkJoin  (cut_depth=4) 13089  
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Table 5.  Barracuda vs. ForkJoin performance over Strassen 

 
Integrate 

 workload Cut-Off Execution time(ms) Performance 

Barracuda start=-59 

end=60 

log2(#tasks)=10 4406 gain=+14% 

ForkJoin  (cut_depth=13) 5103  

 
For quicksort and mergesort, ForkJoin outperforms Barracuda. However, for Fibonacci, Integrate 

and Strassen Matrix product, Barracuda outperforms ForkJoin. 

 

To analyse the performance differences, many parameters must be taken in account: 
 

 Phaser(barrier synchronization)[25] [26]/asynchronous execution; 

 Task/data locality [22] [23] [24] ; 

 Queue sharing/ work stealing. 

 
Table 6.  Barracuda vs. ForkJoin 

 
 Barracuda ForkJoin 

Divide Phase Asynchronous 

Parallel [enable/disable] Parallel 

Queuing Queue sharing Private queue 

Queue synchronization Index Atomic Increment(non-blocking 
synchronization) 

Work stealing 

Conquer Parallel execution Parallel execution 

Merge Phase Phase 

Parallel [enable/disable] Parallel 

 

Dividing operation: One of the main differences between Barracuda and Fork/Join framework 

resides in the dividing phase. Since Fork/Join uses task parallelism, as soon as a task is forked, 
it’s is immediately executed. In contrast, our framework imposes a rendezvous synchronisation 

(barrier). Another difference is that, our framework supplies the ability to use sequential or 

parallel execution in the dividing operation. To do that, go to “compute_brcd(…)” method and 
comment/uncomment out parallel_finalDivide_brcd(…) / finalDivide_brcd(…). The reason is 

that some divide and conquer programs spend slight execution time during dividing process ( 

such as Mergesort, Strassen, Fibonacci, Integrate). In contrast, quicksort spends more time during 

process dividing. For optimisation, end-user can decide to enable parallel dividing in quicksort. 
Meanwhile, it can decide to disable parallel dividing in the context of mergesort execution.   

 

Conquer process: Here, queue management is critical. Barracuda uses a unique shared queue of 
ranges (data structure made-up of actual parameters of recursive method), but threads access the 

tail without blocking synchronisation because atomic index increment is enforced. This technique 

avoids a thread remaining idle while resource (range) is available at the tail. It achieves the same 
result than work stealing even thought their techniques are different. 
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Table 7:  Memory-bound vs. Cpu-bound applications 

 
 Memory-bound Cpu-bound 

Quicksort +  

Mergesort +  

Strassen +  

Fibonacci  + 

Integrate  + 

 

Merging operation: As well Barracuda as Fork/Join framework requires processing in phase to 

achieve merging operation. As in dividing operation, Barracuda supplies ability to enable/disable 
parallel merging operation. For instance, quicksort does not require merging phase, Fibonacci 

spends slight execution time during process merging operation. 

 
Table 8.  Divide/Merge computing  application 

 
 Divide Conquer Merge 

Quicksort + +  

Mergesort  + + 

Strassen  + + 

Fibonacci  +  

Integrate  +  

 

From the previous analysis tables, Barracuda seems to be more suitable for cpu-bound 

application than memory-bound application compared with Fork/Join framework. 

 

3.3. Programming Effort Evaluation 

 

It’s very difficult to quantify the programming effort. Manually parallelizing an application 

requires understanding: 
 

 Coding sequential application; 

 Object -Oriented approach in the context of Java; 

 Multithreading and synchronization; 

 Core processors architecture, memory and cache hierarchy; 

 Compiler optimisation; 

 Etc. 

 

Frameworks (Fork/Join, intel TBB, Open MPI[8]) as well as source-to-source parallelizing 

compilers (OpenMP) , automatic compilers (Intel C++[5]) aim to hide complexity of parallel 
programing by hand and to lessen this error-prone exercise. An interesting question is, for 

instance, how openMP is [more or less] easy to use than Intel TBB. Being aware that parallel 

programming is a trade-off of [less or more] effort and [less or more] gain performance, the 
expected response is not a logic one (yes or no). It deserves more analysis by taking in account 

the different actors (student, experts, researchers, engineers, etc.). For instance, a programmer on 

production enterprise should prefer using OpenMP than manual parallel programming. An expert 
should prefer manual programming than using openMP.  By comparison, desktop end-user 

prefers further graphic interface than command line interface while linux expert prefers command 

line interface. The more, the level is low, the more we can leverage performance and the more the 

exercise is error-prone.  
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In our context, Barracuda is written using Java primitive threads, synchronisations, but end-users 
may only focus on refactoring code (copy, paste, replace, comment out) effort. In the illustrative 

example, in previous section, we refactor  5-10% of the code in terms of code lines. 

 

A mathematical end-user when computing parallel Fibonacci application just follows the 
instructions as indicated in operating mode section.  A parallel programming expert can, in the 

context of quicksort, for instance, sorts the queue before conquer process, in order to improve the 

global performance execution time. Moreover, by sorting the shared tail, by first firing the 
biggest ranges (difference between end and start indexes), the final execution time is 

considerably improved. 

 

4. CONCLUSIONS 
 
Our newly-created open source framework Barracuda is a contribution to parallelizing divide and 

conquer application in the context of Java. It is written in a pure Java code. It exploits implicit 

data-parallelism in dividing and merging operations, making it a mixture of parallel for-loop and 
task parallel framework. It provides sequential/parallel dividing, parallel conquer and 

sequential/parallel merging operations.  Barracuda aims at large public from academic student 

learning parallel programming, programmer developing parallel application as well as large 
application domains such as mathematics, physics, astronomic, which all need more and more 

computing resources. This open framework lets non-expert end-user to only focus on refactoring 

code line and does not matter about parallel programming knowledge. Meanwhile, expert or 

researcher may focus on the core of this framework in order to improve it. 
 

Future work: to make this framework further easier to use, we outlook to introduce: 

 

 pre-processor annotation. This allows end-user, for instance, inserting a “@divide” 
instead of doing “operating mode d)”; 

 compiler directive;  

 lamda expression. 

 

To improve performance achievement, we outlook to supply sorting shared queue (if so) in order 
to first run the biggest ranges. This allows reducing conquer execution time. To make the 

framework exploiting more and more resources computing and targeting distributed memory 

architecture such as local area network, we outlook to insert java socket and rmi;  
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