
International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

David C. Wyld et al. (Eds): DBML, CITE, IOTBC, EDUPAN, NLPAI -2023

pp. 63-75, 2023. IJCI – 2023 DOI:10.5121/ijci.2023.120206

BARRACUDA, AN OPEN SOURCE FRAMEWORK FOR

PARALLELIZING DIVIDE AND CONQUER

ALGORITHM

Abdourahmane Senghor

Department of Computer Science, Cheikh Anta Diop University, Dakar, Senegal

ABSTRACT

This paper presents a newly-created Barracuda open-source framework which aims to parallelize Java

divide and conquer applications. This framework exploits implicit for-loop parallelism in dividing and

merging operations. So, this makes it a mixture of parallel for-loop and task parallelism. It targets shared-

memory multiprocessors and hybrid distributed shared-memory architectures. We highlight the

effectiveness of the framework and focus on the performance gain and programming effort by using this

framework. Barracuda aims at large public actors as well as various application domains. In terms of

performance achievement, it is very close to Fork/Join framework while allowing end-users to only focus

on refactoring code and experts to have the opportunity to improve it.

The barracuda main code implementation is available at https://github.com/boya2senghor/Barracuda

KEYWORDS

divide-and-conquer; task parallelism; parallel for-loop; Fork/Join framework; shared-memory

multiprocessors

1. INTRODUCTION

In the context of multi/many cores era with an exponential growth, parallel thinking, learning,

designing, programming, computing, debugging, and so on, should be the new paradigms.
Supercomputer, grid computing, desktop computer, smartphones, embedded computer, and so on,

are all equipped with multicore processors. Mathematical, thermodynamics, climate science,

aero-spatial, graphical processing applications, and so on, are all computing-intensive.

Operating systems (Windows, Linux, Unix,..), runtimes and system executors (gcc, jre,…),
languages (c/c++, java, matlab, cilk, fortran), compilers and built-in API (openMP, MPI) all

provide with facilities to leverage the underlying multicores architecture. However, most scholar

academic, developers, companies still continue focusing their effort in sequential learning,
programming, computing paradigms.

Now, the actual and great challenge is to develop efficient strategies in order to convince those

communities to adopt parallel programming paradigm. This one basically includes data (or loop)
parallelism and task (method) parallelism algorithms. The main papers, tools, frameworks mostly

focus on the first one. Nevertheless, in this paper we approach the task parallelism specially the

divide and conquer algorithm.
Many applications (mergesort, quicksort, dichotomy searching, Fibonacci, integrate, strassen

matrix multiplication,…) in various scientific fields (numerical sorting and searching,

mathematical calculation, image processing, etc.) rely on divide and conquer algorithm.

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120206

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

64

We use Java as target language, compiler and runtime. Java is the most widespread platform
ranking from supercomputers to smartphones. Java supplies as well primitives as advanced

libraries and API for developing parallel programs. For non-expert parallel programmer, one of

the best way to deal with divide and conquer is to use high level API such as Fork/Join

framework [7][9]. Using primitives API such as threads, runnable, synchronization is a domain
reserved for experts.

In this paper, we propose a newly-created open source framework, we name Barracuda. This
framework is purely built around Java primitives API and is aimed at both end-users and experts.

End-users focus their effort simply in the copy-past-replace-comment out action according an

operating mode. He does not need to deeply know the concept of parallel programming. The
expert, however, may reuse this framework and improve it, in terms of performance outcome and

build high level API.

The core implementation of the framework consists of more than nine (9) functions and two (2)
internal classes. The functions are classified in three functionalities which are dividing,

processing and merging. The first internal class encapsulates the parameters and result of the

current recursive method in the same object. The second one implements a runnable object, we
call task.

Task parallelism relies on light thread management. Furthermore, work stealing algorithm is used

in order to avoid a thread being idle while there are some tasks remaining in certain queues. That
strategy improves the overall performance. Parallelizing compilers like openMP [1][3] supplies

task parallelism , API and environment variables.

Intel TBB[6][10] supplies API to deal with divide-and-conquer algorithm. In habaneroJava[4],
the asynch/finish concept is used to parallelize divide-and-conquer. HabaneroJava is an extension

of the Java language and is introduced as a course at Rice University.

In [2], authors implement a framework relying on TBB, OpenMP and TaskFlow which deal with

divide-and-conquer, aiming to reduce programming effort and improving performance.

One of the difficulties to be addressed with parallel recursive application is how to leverage the
hybrid distributed shared-memory multiprocessors architectures. Most of the frameworks

[27][28] are fitted to only target shared-memory multiprocessors architecture. Nevertheless, some

frameworks like in [29], are designed and implemented to exploit both shared memory and
cluster architectures. Our framework, in the fact that it explicitly divides task in subtasks which

are stored in an array, potentially offers the possibility to schedule and distribute subtasks over

nodes of cluster or hybrid distributed shared-memory architecture.

The sequential consistency, performance gain and programming effort are the core of the parallel

programming. In our framework, when the instructions are strictly followed, it guarantees

sequential consistency that is a necessary but not sufficient condition. However, it’s not worth
parallelizing an application if we may not obtain performance gain compared to sequential one.

Our framework allows performance gain and tends to reduce programming effort.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

65

2. FRAMEWORK DESCRIPTION

2.1. Framework Architecture and Implementation

Figure 0: Barracuda Architecture

The main architecture of Barracuda highlights the process of extracting dividing and merging
function from the input sequential recursive method. End-user and programmer focus their effort

in that extracting process. Barracuda provides with for-loop parallelization for those functions.

Other built-in functions and internal classes make up the framework. No intervention from the

end-user is required for those functions.

Figure 1.a: Top-Down Matrix of ranges perspective Figure 1.b: Tree of ranges ‘perspective

The second and third figures (Fig1.a, Fig1.b) describe the process of dividing a 2-way recursive

method.

 range_brcd is made up of recursive method ‘s formal parameters and result (if so) variables.
In general purpose algorithm[2], problem (parameter) an result (return, if so) are managed

separately. We decide to encapsulate problem and result in the same object we name

range_brcd. From a matrix perspective, it represents an element or cell. From a tree

perspective, it represents a node (parent or child).

 step_brcd: from a matrix perspective, it represents a row index and from tree perspective, it

represents the level of a same generation of nodes (parents or children).

 rangeArray_brcd: from a matrix perspective, it represents a row of ranges. From a tree
perspective, it represents a generation of nodes.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

66

 rangeArrayList_brcd: from a matrix perspective, it represents itself the matrix (two-

dimensional array). From a tree perspective, it represents the tree itself or a set of node
generations.

 The framework skeleton is built around more than nine (9) functions and two (2) internal

classes. However, parallel dividing and parallel merging supply additional functions and

internal classes.

 divide_brcd(…): In the framework, this function has empty content and must be customized

by user. The content of the recursive method will be copied into this function. The called

recursive method will be replaced by operation of adding generated range_brcd into
rangeArray_brcd of the next step_brcd (equal current step_brcd+1 position).

 finalDivide_brcd(…): This function traverses the matrix and for each step, traverses the

columns, and for each cell divides it into k_way_brcd range_brcd (into k ranges). In
addition, these ranges are added to the rangeArray_brcd array corresponding to

“step_brcd+1”. At the end, this function generates a triangular matrix of ranges. To divide

each range, this function calls divide_brcd. The way to divide each range depends on the

recursive method. The numOfTasks specified by the end-user determines the cut-off
parameter and impacts the number of the steps in dividing process:

 int numOfSteps_brcd = (int) (log(numOfTasks_brcd) / log(k_way_brcd)); This function

is built by the framework. No effort (refactoring) is needed from the programmer.

 parallel_finalDivide_brcd (…) is the parallel implementation of finalDivide_brcd(…).

Parallelization is done in phases. This function is built by the framework. No effort

(refactoring) is needed from the programmer.

 setTasks_brcd(…) The rangeArray_brcd corresponding to the last step_brcd position is

considered (represented by queue) . This array will be considered as a global resource or

queue to be shared by next threads workThread_brcd. A cursor_brcd implementing

atomicInteger counter (which is a non-blocking synchronisation) allows safely moving from
an index of that array to another. This function creates as many tasks as there are

workerThread_brcd. This defines how our queue is managed. Compared with work

stealing queue [11] [12] [13] [14] management where each processor has its own queue, we
have a unique queue shared among processors. One of the goal of work stealing is to avoid

that a processor after ending up running its own queue, stay idle while some processors have

tasks remaining in their queue. In our sharing queue implementation, as long as tasks remain
in the queue, no processor will be idle. From this perspective, those two strategies produce

the same result. We instantiate as tasks as the number of threads specified by the end user or

by default the underlying runtime. We use primitive threads for processor execution and

runnable interface for task implementation. This function is built and fully implemented by
the framework. No effort is required from the programmer.

 forkJoin_brcd(…): for each task_brcd previously created, this function maps a

workerThread_brcd. The main thread launching this function starts the different
workerThread_brcd and waits for them until they end their execution. Here we use primitive

fork-join synchronisation. This function is a built by the framework. No effort is needed

from the programmer.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

67

Figure 2: Shared queue management

• merge_brcd(…): Like divide_brcd, this function needs to be defined by the user. He simply

replaces the called recursive method by the operation of recovering result in, for each

range_brcd. This operation is made easier by the fact that we encapsulate parameters and result
in the same range_brcd. We describe the effort of the programmer to customizing this function

later.

• finalMerge_brcd(…): this function is a bottom-up operation where, by a group of k_way_brcd,

it merges their result and put it in their up parent corresponding range_brcd. This function

traverses the matrix from bottom-up and iterates over the rows of the matrix. For each row, the
k_way_brcd adjacent range_brcd are taken, in parameters by the merge operation and the result

is post (composed) in their parent range_brcd result. At the end, the final result (the

rangeArray_brcd or the original range_brcd) is obtained. This function is built by the framework.

No effort (refactoring) is needed from the programmer.

• parallel_finalMerge_brcd(…) is the parallel implementation of finalMerge_brcd((…).

Parallelization is done in phases. No effort (refactoring) is required from the end-
user/programmer.

• compute_brcd(…): this function is the parallel function of the recursive method. It calls all
method previously defined. range_brcd is the original actual parameter of the recursive function.

numThreads_brcd is the number of worker threads to be executed. numOfTasks_brcd is a number

of tasks the user wants the problem be divided up before starting task parallel execution.

k_way_brcd is the k_way recursive method invocation.

Figure 3.a: Bottom-up Matrix of ranges Figure 3.b: Bottom-up Tree of ranges

Fig3.a and Fig3.b describe the process of merging a 2-way recursive method.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

68

2.2. Framework Functionalities

The framework presents the following functionalities:

 Transforming a sequential code to parallel one that can leverage the shared-memory
multiprocessor architecture.

 Transforming a pure task parallelism code into a mixture of for-loop parallelism and

recursive task-parallelism code.

 Running the parallel code by having the ability to influence the performance via the

number of partitions obtained from dividing operation.

 In the context of hybrid distributed architectures which nodes are shared-memory
multiprocessor, resulting tasks from dividing operation are distributed to different nodes.

 Giving the user the opportunity to customize the parallel code and add additional code.

2.3. Operating Mode and programmer Effort

The programming effort is reduced to copy-past-replace operation. Programmer does not need to

be parallel programmer expert.

a) Copy the content within the block of DivideAndConquer_BRCD class and insert it just

after the recursive method block.

b) Copy and paste formal parameters and (if so) return variable declarations of the
recursive method within the Range_brcd class. Declare a “Range_brcd() “constructor

with recursive method formal parameters as formal parameters;

c) Within “run()” method of “Task_brcd” class , call recursive method with actual
parameters preceded by "rangeArray_brcd[i]." ; If the recursive method returns, prepend

“rangeArray_brcd[i].result=” to the statement;

d) Copy and paste the content of k-way recursive method content within divide_brcd()
function; prepend "range_brcd." to the original formal parameters by replacing “return

[variable]” by return. Replace any called recursive method by "

rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd (...))". Comment

out the following code immediately after the last called recursive method.
e) Copy and paste content of k-way recursive method within merge_brcd() function.

Prepend "range_brcd." to the original formal parameters and replace “return” by

"range_brcd.result=". Replace any called recursive method by "
rangeArrayList_brcd[step_brcd][++indexOfRange_brcd].result”;

f) Comment out the called main recursive method. Declare a “new range_brcd(…)” with

the actual parameter of the called recursive method; Call the “compute_brcd(…)”
method with range_brcd , number of threads, number of tasks and k-way actual

parameters. Set “range_brcd.result” into the “result” variable.

3. EFFECTIVENESS AND IMPACT

3.1. Illustrative Example

In this example, we illustrate framework’s application upon Fibonacci. Only functions and
classes to be modified are shown. First, download the framework from

https://github.com/boya2senghor/Barracuda. Follow instructions from section 2.3. The classes and

functions to be modified are static class Range_brcd{…}, class Task_brcd implements

Runnable{…}, public void divide_brcd(..){…}, public void merge_brcd(…){…}.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

69

/*package and import*/

public class Fibonacci {

 public long fibonacci(int n) {

 if (n == 0) return 0;

 if (n == 1) return 1;

 long x, y;

 x = fibonacci(n - 1);

 y = fibonacci(n - 2);

 return x + y;

 }

 /** Operating mode : a) **/ (Follow instruction a) from section 2.3)

 static class Range_brcd {

/** Operating mode : b) **/ (Follow instruction b) from section 2.3)

 int n;

 long result;

 Range_brcd(int n){

 this.n=n;

 }

 }

 class Task_brcd implements Runnable {

 /*code*/

 public void run() {

 try {

 while (true) {

 int i = cursor_brcd.getAndIncrement(); //cursor management by non-blocking synchronization

 /** Operating mode : c) **/ (Follow instruction from c) in section 2.3)

 rangeArray_brcd[i].result=fibonacci(rangeArray_brcd[i].n);

 }

 } catch (Exception e) {

 }

 }

 }

public void divide_brcd(Range_brcd range_brcd, Range_brcd[][] rangeArray_brcd, int step_brcd, int indexOfRange_brcd)
{

/** Operating mode : d) **/ (Follow instruction d) from section 2.3)

 if (range_brcd.n == 0) return;

 if (range_brcd.n == 1) return;

 //long x, y;

 //x = fibonacci(n - 1); //this statement is commented out and replaced by the following statement

 rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd(range_brcd.n - 1);

 //y = fibonacci(n - 2); //this statement is commented out and replaced by the following statement

 rangeArray_brcd[step_brcd][++indexOfRange_brcd]=new Range_brcd(range_brcd.n - 2);

 //return x + y; //this statement is commented out

 }

 public void merge_brcd(Range_brcd range_brcd, Range_brcd[][] rangeArrayList_brcd, int step_brcd, int

indexOfRange_brcd) {

/** Operating mode : e) **/ (Follow instruction e) from section 2.3)

 if (range_brcd.n == 0) {range_brcd.result=0; return ;}

 if (range_brcd.n == 1) {range_brcd.result=1; return ; }

 long x, y;

 //x = fibonacci(range_brcd.n - 1);

 x=rangeArrayList_brcd[step_brcd][(++indexOfRange_brcd)].result;

 //y = fibonacci(range_brcd.n - 2);

 y=rangeArrayList_brcd[step_brcd][(++indexOfRange_brcd)].result;

 //return x+y

 range_brcd.result=x + y;

 }

/*Other required Barracuda method which do not need any modifications*/

 public static void main(String args[]) {

 final int n = 45;

 Fibonacci fib = new Fibonacci();

/** Operating mode : f) **/ (Follow instruction f) from section 2.3)

 //long z = fib.fibonacci(n);

 Range_brcd range_brcd=new Range_brcd(n);

 fib.compute_brcd(range_brcd, 4, 32, 2);

 long z=range_brcd.result;

 }

}

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

70

3.2. Performance Evaluation

We evaluate and compare the performance of our framework with fork-join framework by

running quicksort, mergesort, fibonacci, strassen matrix multiplication, integrate programs over
an IBM System X 3650 with the following characteristics:

 8 cores processors , 8 GB memory;

 Fedora 25 operating system;

 Java 1.8.0 runtime

Each of these programs is both parallelized using Barracuda and ForkJoin. An experiment

execution consists of running one parallel program in target environment. We repeat 10 times

each experiment and consider the average execution time. It’s also important to note that for each

program the best cut-off [15] [16] [17] [18] [19] [20] [21]is retained. At the end of the
experimentation, we present the outcomes in the following tables.

Table 1. Barracuda vs. ForkJoin performance over Quicksort

Quicksort

 workload Cut-Off Execution time(ms) Performance

Barracuda N=320x106 log2 (numOfTasks)=10 4862,0 lost: -7%

ForkJoin (right-left)<300x103 4512,0

Table 2. Barracuda vs. ForkJoin performance over Mergesort

Mergesort

 Workload Cut-Off Execution time(ms) Performance

Barracuda N=160M log2(#tasks)=4 6084,0 lost:-2%

ForkJoin (right-left)<4999999 5979,0

Table 3. Barracuda vs. ForkJoin performance over Fibonacci

Fibonacci

 Workload Cut-Off Execution time(ms) Performance

Barracuda N=50 log2(#tasks)=18 20877 gain=+2%

ForkJoin (n<30) 21305

Table 4. Barracuda vs. ForkJoin performance over Strassen

Strassen Matrix Product

 Workload Cut-Off Execution

time(ms)

performance

Barracuda N=4096 log7(#tasks)=1 12556 gain=+4%

ForkJoin (cut_depth=4) 13089

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

71

Table 5. Barracuda vs. ForkJoin performance over Strassen

Integrate

 workload Cut-Off Execution time(ms) Performance

Barracuda start=-59

end=60

log2(#tasks)=10 4406 gain=+14%

ForkJoin (cut_depth=13) 5103

For quicksort and mergesort, ForkJoin outperforms Barracuda. However, for Fibonacci, Integrate

and Strassen Matrix product, Barracuda outperforms ForkJoin.

To analyse the performance differences, many parameters must be taken in account:

 Phaser(barrier synchronization)[25] [26]/asynchronous execution;

 Task/data locality [22] [23] [24] ;

 Queue sharing/ work stealing.

Table 6. Barracuda vs. ForkJoin

 Barracuda ForkJoin

Divide Phase Asynchronous

Parallel [enable/disable] Parallel

Queuing Queue sharing Private queue

Queue synchronization Index Atomic Increment(non-blocking
synchronization)

Work stealing

Conquer Parallel execution Parallel execution

Merge Phase Phase

Parallel [enable/disable] Parallel

Dividing operation: One of the main differences between Barracuda and Fork/Join framework

resides in the dividing phase. Since Fork/Join uses task parallelism, as soon as a task is forked,
it’s is immediately executed. In contrast, our framework imposes a rendezvous synchronisation

(barrier). Another difference is that, our framework supplies the ability to use sequential or

parallel execution in the dividing operation. To do that, go to “compute_brcd(…)” method and
comment/uncomment out parallel_finalDivide_brcd(…) / finalDivide_brcd(…). The reason is

that some divide and conquer programs spend slight execution time during dividing process (

such as Mergesort, Strassen, Fibonacci, Integrate). In contrast, quicksort spends more time during

process dividing. For optimisation, end-user can decide to enable parallel dividing in quicksort.
Meanwhile, it can decide to disable parallel dividing in the context of mergesort execution.

Conquer process: Here, queue management is critical. Barracuda uses a unique shared queue of
ranges (data structure made-up of actual parameters of recursive method), but threads access the

tail without blocking synchronisation because atomic index increment is enforced. This technique

avoids a thread remaining idle while resource (range) is available at the tail. It achieves the same
result than work stealing even thought their techniques are different.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

72

Table 7: Memory-bound vs. Cpu-bound applications

 Memory-bound Cpu-bound

Quicksort +

Mergesort +

Strassen +

Fibonacci +

Integrate +

Merging operation: As well Barracuda as Fork/Join framework requires processing in phase to

achieve merging operation. As in dividing operation, Barracuda supplies ability to enable/disable
parallel merging operation. For instance, quicksort does not require merging phase, Fibonacci

spends slight execution time during process merging operation.

Table 8. Divide/Merge computing application

 Divide Conquer Merge

Quicksort + +

Mergesort + +

Strassen + +

Fibonacci +

Integrate +

From the previous analysis tables, Barracuda seems to be more suitable for cpu-bound

application than memory-bound application compared with Fork/Join framework.

3.3. Programming Effort Evaluation

It’s very difficult to quantify the programming effort. Manually parallelizing an application

requires understanding:

 Coding sequential application;

 Object -Oriented approach in the context of Java;

 Multithreading and synchronization;

 Core processors architecture, memory and cache hierarchy;

 Compiler optimisation;

 Etc.

Frameworks (Fork/Join, intel TBB, Open MPI[8]) as well as source-to-source parallelizing

compilers (OpenMP) , automatic compilers (Intel C++[5]) aim to hide complexity of parallel
programing by hand and to lessen this error-prone exercise. An interesting question is, for

instance, how openMP is [more or less] easy to use than Intel TBB. Being aware that parallel

programming is a trade-off of [less or more] effort and [less or more] gain performance, the
expected response is not a logic one (yes or no). It deserves more analysis by taking in account

the different actors (student, experts, researchers, engineers, etc.). For instance, a programmer on

production enterprise should prefer using OpenMP than manual parallel programming. An expert
should prefer manual programming than using openMP. By comparison, desktop end-user

prefers further graphic interface than command line interface while linux expert prefers command

line interface. The more, the level is low, the more we can leverage performance and the more the

exercise is error-prone.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

73

In our context, Barracuda is written using Java primitive threads, synchronisations, but end-users
may only focus on refactoring code (copy, paste, replace, comment out) effort. In the illustrative

example, in previous section, we refactor 5-10% of the code in terms of code lines.

A mathematical end-user when computing parallel Fibonacci application just follows the
instructions as indicated in operating mode section. A parallel programming expert can, in the

context of quicksort, for instance, sorts the queue before conquer process, in order to improve the

global performance execution time. Moreover, by sorting the shared tail, by first firing the
biggest ranges (difference between end and start indexes), the final execution time is

considerably improved.

4. CONCLUSIONS

Our newly-created open source framework Barracuda is a contribution to parallelizing divide and

conquer application in the context of Java. It is written in a pure Java code. It exploits implicit

data-parallelism in dividing and merging operations, making it a mixture of parallel for-loop and
task parallel framework. It provides sequential/parallel dividing, parallel conquer and

sequential/parallel merging operations. Barracuda aims at large public from academic student

learning parallel programming, programmer developing parallel application as well as large
application domains such as mathematics, physics, astronomic, which all need more and more

computing resources. This open framework lets non-expert end-user to only focus on refactoring

code line and does not matter about parallel programming knowledge. Meanwhile, expert or

researcher may focus on the core of this framework in order to improve it.

Future work: to make this framework further easier to use, we outlook to introduce:

 pre-processor annotation. This allows end-user, for instance, inserting a “@divide”
instead of doing “operating mode d)”;

 compiler directive;

 lamda expression.

To improve performance achievement, we outlook to supply sorting shared queue (if so) in order
to first run the biggest ranges. This allows reducing conquer execution time. To make the

framework exploiting more and more resources computing and targeting distributed memory

architecture such as local area network, we outlook to insert java socket and rmi;

REFERENCES

[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,

pp120-122.

[2] Gizem, Aksahya & Ayese, Ozcan (2009) Coomunications & Networks, Network Books, ABC
Publishers.

[3] Adams, Joel, & Elizabeth Shoop, (2014) "Teaching shared memory parallel concepts with OpenMP."

Journal of Computing Sciences in Colleges, 30.1 : 70-71.

[4] Danelutto, Marco, et al., (2016) "A divide-and-conquer parallel pattern implementation for

multicores."In Proceedings of the 3rd International Workshop on Software Engineering for Parallel

Systems. ACM.

[5] Duran, Alejandro, et al., (2009) "Barcelona openmp tasks suite: A set of benchmarks targeting the

exploitation of task parallelism in openmp." Parallel Processing. ICPP'09. International Conference

on. IEEE.

[6] Imam, Shams, and Vivek Sarkar, (2014) "Habanero-Java library: a Java 8 framework for multicore

programming." In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java platform: Virtual machines, Languages, and Tools. ACM.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

74

[7] Automatic Parallelization with Intel Compilers. Available at: https://software.intel.com/en-

us/articles/automatic-parallelization-with-intel-compilers

[8] Kim, Wooyoung, and Michael Voss, (2011) "Multicore desktop programming with intel threading

building blocks." IEEE software 28.1: 23-31.

[9] D. Lea, (2000) “A Java fork/join framework.” In Proceedings of the ACM 2000 Java Grande
Conference. :36-43.

[10] Open MPI. Available at: https://www.open-mpi.org/

[11] SENGHOR Abdourahmane, and Karim KONATE,(2013) "A Java Fork-Join Framework-based

Parallelizing Compiler for Dealing with Divide-and-conquer Algorithm." Journal of Information

Technology Review 4.1 : 1-12.

[12] Intel Threading Building Blocks, (2017). Available at: https://www.threadingbuildingblocks.org/

[13] Berenbrink, P., Friedetzky, T., & Goldberg, L. A. (2003). The natural work-stealing algorithm is

stable. SIAM Journal on Computing, 32(5), 1260-1279

[14] Dinan, J., Larkins, D. B., Sadayappan, P., Krishnamoorthy, S., & Nieplocha, J. (2009, November).

Scalable work stealing. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis (pp. 1-11).

[15] Chase, D., & Lev, Y. (2005, July). Dynamic circular work-stealing deque. In Proceedings of the
seventeenth annual ACM symposium on Parallelism in algorithms and architectures (pp. 21-28).

[16] Acar, U. A., Charguéraud, A., & Rainey, M. (2013, February). Scheduling parallel programs by work

stealing with private deques. In Proceedings of the 18th ACM SIGPLAN symposium on Principles

and practice of parallel programming (pp. 219-228).

[17] Fonseca, A., & Cabral, B. (2017). Evaluation of runtime cut-off approaches for parallel programs. In

High Performance Computing for Computational Science–VECPAR 2016: 12th International

Conference, Porto, Portugal, June 28-30, 2016, Revised Selected Papers 12 (pp. 121-134). Springer

International Publishing.

[18] Duran, A., Corbalán, J., & Ayguadé, E. (2008, November). An adaptive cut-off for task parallelism.

In SC'08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing (pp. 1-11). IEEE.

[19] Fonseca, A., & Cabral, B. (2018). Overcoming the no free lunch theorem in cut-off algorithms for
fork-join programs. Parallel Computing, 76, 42-56.

[20] Fonseca, A., Lourenço, N., & Cabral, B. (2017). Evolving cut-off mechanisms and other work-

stealing parameters for parallel programs. In Applications of Evolutionary Computation: 20th

European Conference, EvoApplications 2017, Amsterdam, The Netherlands, April 19-21, 2017,

Proceedings, Part I 20 (pp. 757-772). Springer International Publishing.

[21] Iwasaki, S., & Taura, K. (2016, September). A static cut-off for task parallel programs. In

Proceedings of the 2016 International Conference on Parallel Architectures and Compilation (pp.

139-150).

[22] Duran, A., Corbalán, J., & Ayguadé, E. (2008). Evaluation of OpenMP task scheduling strategies. In

OpenMP in a New Era of Parallelism: 4th International Workshop, IWOMP 2008 West Lafayette, IN,

USA, May 12-14, 2008 Proceedings 4 (pp. 100-110). Springer Berlin Heidelberg.

[23] Iwasaki, S., & Taura, K. (2016, September). Autotuning of a cut-off for task parallel programs. In
2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSoC) (pp. 353-360). IEEE.

[24] Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., & Raicu, I. (2014, October). Optimizing load

balancing and data-locality with data-aware scheduling. In 2014 IEEE International Conference on

Big Data (Big Data) (pp. 119-128). IEEE.

[25] Zhang, X., Feng, Y., Feng, S., Fan, J., & Ming, Z. (2011, December). An effective data locality aware

task scheduling method for MapReduce framework in heterogeneous environments. In 2011

International Conference on Cloud and Service Computing (pp. 235-242). IEEE.

[26] Ceballos, G., Hagersten, E., & Black-Schaffer, D. (2016). Formalizing data locality in task parallel

applications. In Algorithms and Architectures for Parallel Processing: ICA3PP 2016 Collocated

Workshops: SCDT, TAPEMS, BigTrust, UCER, DLMCS, Granada, Spain, December 14-16, 2016,
Proceedings (pp. 43-61). Springer International Publishing.

[27] Shirako, J., Peixotto, D. M., Sarkar, V., & Scherer, W. N. (2008, June). Phasers: a unified deadlock-

free construct for collective and point-to-point synchronization. In Proceedings of the 22nd annual

international conference on Supercomputing (pp. 277-288).

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.2, April 2023

75

[28] Shirako, J., Peixotto, D. M., Sarkar, V., & Scherer, W. N. (2009, May). Phaser accumulators: A new

reduction construct for dynamic parallelism. In 2009 IEEE International Symposium on Parallel &

Distributed Processing (pp. 1-12). IEEE.

[29] Eliahu, D., Spillinger, O., Fox, A., & Demmel, J. (2015). Frpa: A framework for recursive parallel

algorithms. University of California at Berkeley Berkeley United States.
[30] Danelutto, M., De Matteis, T., Mencagli, G., & Torquati, M. (2016, October). A divide-and-conquer

parallel pattern implementation for multicores. In Proceedings of the 3rd International Workshop on

Software Engineering for Parallel Systems (pp. 10-19).

[31] González, C. H., & Fraguela, B. B. (2017). A general and efficient divide-and-conquer algorithm

framework for multi-core clusters. Cluster Computing, 20, 2605-2626.

AUTHORS

Abdourahmane SENGHOR holds a computer science Phd degree since 2014

especially in parallel and distributed programming and computing. He conciliates

research activity in academy world and Informatics department manager in enterprise

world.

	Abstract
	Keywords
	divide-and-conquer; task parallelism; parallel for-loop; Fork/Join framework; shared-memory multiprocessors

