
International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

David C. Wyld et al. (Eds): SCDD, CIOS, EDUR, CSEAI -2023

pp. 01-14, 2023. IJCI – 2023 DOI:10.5121/ijci.2023.120301

TEXT GENERATION WITH GAN NETWORKS USING

FEEDBACK SCORE

Dmitrii Kuznetsov

Department of Software Engineering, South China University of Technology,

Guangzhou, China

ABSTRACT

Text generation using GAN networks is becoming more effective but still requires new approaches to

achieve stable training and controlled output. Applying feedback score to control text generation is one of

the most important topics in NLP nowadays. Feedback or response is a natural part of conversations and

not only consists of words, but also can take other shapes such as emotions, or other reactions. In dialogue

processes feedback is a factor influencing the next phrase or reaction. Depending on this feedback or
response we correct our possible answers by trying to change the tone, context, or even structure of the

sentences. Applying feedback as part of the GAN model structure will give us new ways to apply feedback

and generate well-controlled outputs with defined scores which is very important in real-world

applications and systems. With GAN networks and their instability in training and unique architecture, it

becomes trickier and requires new ways of solving this problem. The matter of feedback usages for text

generation task using GAN networks we will review in this paper and experiment with integrating score

values into GAN's generator model layers.

KEYWORDS

Neural Networks, Text generation, GAN networks, Autoencoders, Controlled text generation

1. INTRODUCTION

Controlled text generation can be viewed as a separate topic of the natural language process and
text generation area since it has its own difficulties and output structure. Applying machine

learning techniques for AI-driven systems requires re-designing neural network architectures,

techniques, and even datasets.

While text generation by itself is mostly sequence-2-sequence prediction, conversational text

generation or sentiment-controlled text generation has important differences such as reactions to

changing topics, emotions, and feedback from other participants. The generation of correct output
also depends on a clear understanding of conversational parties of questions and responses. Even

in natural human communication a misunderstanding often is a part of conversations.

In this work, we will apply feedback to the evaluation part of the GAN network and its generative
model. For the experiment, we will simplify the feedback form and assume that conversational

participants will have a simple way to evaluate text. That way we will use a score metric the same

as e-commerce websites use in their review systems with a range of 1-5 where 1 is very bad and 5
is excellent.

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120301

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

2

1.1. Issues of GAN Architectures for Text Generation

GAN models can perfectly solve image generation or filtering tasks but in the case of text

generation, it faces specific obstacles depending on the context and irregular length of the texts.
Losing context over the time steps is a natural behavior of any generative model.

Usually, in n-gram text generation, we repeat N time steps in RNN (LSTM for example) to
predict the next word in a sentence to create text. Latent vector z is the input hidden state h0 and

the generator output G(z) is the sentence. But here we not training RNN to minimize cross-

entropy loss with respect to the target – we are training it to produce such output to make the

discriminator think that sentence is “real” to minimize 1 – D(G(z)).

When we are predicting the next word in RNN we are using the output of the softmax function,

but this “next-word-generation” is not differentiable and we cannot do back-propagation, to get
and calculate gradients of this operation of generating the next words.

This problem doesn’t exist in the image type of data where generated data is continuous and can
be passed directly from GAN’s generator to the discriminator. Solutions for text generation tasks

using GAN models are:

a. Applying reinforce learning algorithms and policy gradients, for example in the work
“SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient” [1]

b. The Gumbel-Softmax approximation (continuous approximation of the softmax function)

c. Produce continuous output of the generator (auto-encoders)

1.2. Related Works

In the paper “Wasserstein GAN” [2] authors proposed an alternative way to the GAN architecture

and training process.

Two probability distributions on a certain metric space can be separated by the Wasserstein

distance (also known as the Earth Mover's distance). It makes intuitive sense to think of it as the

least amount of effort required to change one distribution into another. Work is defined as the

sum of the mass of the distribution that needs to be transferred together with the distance that
needs to be covered. The cost of the ideal transportation strategy is then the Wasserstein distance.

Jensen-Shannon divergence minimization is the original GAN goal, while Wasserstein distance
provides the following advantages:

a. Since Wasserstein distance is continuous and almost differentiable everywhere, we may
train the model to its best possible state. On the other hand, JS divergence has a vanishing

gradients problem.

b. As the distributions move closer to one another and more apart, the Wasserstein distance

diverges, making it a useful statistic.
c. Using Wasserstein distance in training is more stable than JS divergence.

d. In the case of Wasserstein distance, the “mode collapse” issue happens less often.

WGANs provide far more reliable training and a purposeful training goal.

In the work “Emotional Text Generation Based on Cross-Domain Sentiment Transfer” [3]
authors using the autoencoders model converted original negative review text to positive text.

This work demonstrated the ability of the model to extract patterns of the original text and

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

3

reconstruct it with another emotional tone. Using autoencoders gives us new ways to use text
representation in models' architecture.

2. APPLYING FEEDBACK FOR TEXT GENERATION TASK IN GAN

2.1. Structure and Types of Feedback

The most popular datasets for NLP tasks usually have some sort of customer feedback, usually is
kind of score (as an integer value) or positive-negative value. It is very useful when we do

sentiment analysis which helps us to predict the emotional value of the text.

This kind of feedback oversimplifies real-world scenarios, but it is suitable to build test cases and
doing experiments.

Working with a single value describing the reaction of the text (or generated output) is becoming
straightforward and can be easily applied to the neural network structure.

2.2. Applying Feedback to Discriminator’s Loss Function

In the first case, we are using an approach to apply the reward to the discriminator during its

process of calculating losses. The reward is a score given as feedback to the discriminator’s loss
function. This approach can work well when we need to generate texts with higher score values.

Discriminator (D) calculates 2 losses: one from real data and one from fake generated data. When

the discriminator is trying to evaluate whether data is real or fake, with real data y is always 1.
(y=1). That way we can calculate losses using binary cross-entropy:

Formula 1. Loss calculation for real data

Similar way we do losses calculation for evaluating fake data:

Formula 2. Loss calculation for fake data

Combining losses, we get the total loss of Discriminator:

Formula 3. Total GAN’s discriminator losses

The main task of the GAN model is to minimize this loss value: min[L(Discriminator)]. We will

apply the reward to the real data loss function. The main intention is to:

a. Have a bigger loss value if the reward is smaller than 1 and closer to 0 (0%)

b. Have a smaller loss value if the reward is closer to 1 (100%)

We apply feedback score to the discriminator as a factor, multiplying values according to:

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

4

R - feedback score as factor (in range 0…1, such as 0.9 = 90%, 0.5 = 50%, etc.), 0<R<1
L = Loss of discriminator from real data training output (modulus):

Formula 4. Updated discriminator losses

That way we are re-calculating ground true values before the actual losses’ calculation. The final

formula for calculating losses:

Formula 5. Total discriminator losses

That way model will try to produce output that has a higher review score. This way of applying

feedback factor simplifies the experiment to get initial results that can be used for future research.

Generator losses in GAN are calculated from discriminator losses. Need to mention that during

the training of the generator, the discriminator is not updating its weights. The generator trying to

fool the discriminator to classify fake data as real. That way generator loss function can be
written as:

Formula 6. Generator loss function

Combining losses from the generator and discriminator gives us the next formula for the
calculation of total GAN losses:

Formula 7. Generator loss function

It can be described as min / max game where the generator is trying to minimize the loss when

the discriminator is trying to do the opposite: to increase losses.

This simplified approach works well when we intent to have one direction score value to reward
or penalize the discriminator. But for controlled output of model with score differentiation such

simple algorithm doesn’t work.

2.3. Feedback Score Differentiation

To control model output and generate diverse texts depending on feedback score value we need
to apply another approach.

For this task, we need to change the structure for the input layers of the generator model to be
able to feed text and score vectors together to the model.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

5

The generator as input gets some noise (latent space) and score value, and as output generates
text. Then we feed the discriminator with those values along with the real text. Then we calculate

losses usual way and update the discriminator and generator accordingly to the algorithm.

In this work, we are using a combination of autoencoders model along with GAN architecture.

The autoencoders model (AE) consists of 2 parts: the encoder which takes text embeddings as

input and produces abstract text representation and the decoder part which take this text
representation and outputs reconstructed text. In the AE model encoder consists of an

embeddings layer and a bi-directional GRU layer. The output of the encoder has shape [b, s, u]

where:

b – number of samples

s – the fixed maximum length of texts (with zero paddings)

u – number of hidden units

Decoder consists of an embeddings layer, a GRU layer, an attention layer (to prevent losing

context over the time steps), and a normalization layer.

The input of our GAN network is text embeddings processed by the AE encoder part. That way

we get abstract text representation to be able to feed the discriminator directly from the generator
output.

This way our model scheme will look like this:

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

6

Figure 1: GAN model with an applied feedback score

Let’s define components of algorithm as: z – generated noise input, Xrt – real text input, Xrv -
real text vector processed by AE, Xrs – real feedback score value, gp – gradient penalty (from

WGAN). Then total losses of GAN’s model can be computed as:

Formula 8. Total GAN losses with applied feedback score

Need to notice that during GAN training we should use the same feedback score value for the

generator’s input as the real text has in this training step. For example, if in real sample text has a

score of 3 then we pass to generator noise with this score value. After we get the generator

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

7

output, we feed the discriminator real text which has a feedback score of 3 and generated a
sample with the same score. It makes the discriminator effectively do its work.

Algorithm 1: GAN with score differentiation

Require: AE – Autoencoders, AE Encoder – encoder model of AE, AE Decoder – decoder model

of AE, GAN – adversarial model, G – generator, D – discriminator, z – generated noise input, Xrt

– real text input, Xrv - real text vector processed by AE, Xrs – real feedback score value, gp –
gradient penalty, ae_num_epochs – training epochs for AE model, gan_num_epochs – training

epochs for GAN model

1: repeat

2: for ae_num_epochs do:

3: for batch in data do:

4: pass text samples Xrt to encoder

5: generate AE Encoder’s output vector
 representation Xrv

6: pass Xrv to AE Decoder

7: get AE Decoder’s output Yrt

8: compute AE losses as: Loss(Xrt - Yrt)
9: apply gradient descent

10: end for;

11: until AE can produce the same output text as input
12: Converting text samples Xrt to vectors Xrv using trained AE Encoder

13: Combine text vectors and score values to GAN dataset: (Xrv, Xrs)

14: Start adversarial training with new dataset

15: repeat:

16: for gan_num_epochs do

17: for batch in data do

18: generate noise z and pass z and Xrs to G
19: get G output as: G(z + Xrs)

20: get D output 1 as: D(Xrv)

21: get D output 2 as: D(G(z + Xrs))
22: compute G losses as: Loss(D(G(z + Xrs)))

23: calculate D losses as: Loss(D(Xrv))

24: calculate discriminator total losses as: Ltotal = -Loss(D(Xrv)) + Loss(D(G(z + Xrs)))

25: calculate gradient penalty (gp)
26: add gp to D total losses: Ltotal + gp

27: calculate D gradients apply its optimizer

28: if train G on this step
 calculate G gradients

 and apply its optimizer

29: end for

30: until GAN converges

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

8

3. EXPERIMENT

3.1. Dataset and Data Pre-Processing

For this experiment was used “Amazon Review Data” and its musical instruments reviews
subset, which includes reviews with rating (score), texts, “helpfulness votes” and some metadata

about the product.1

In this experiment, we use NLTK (Natural Language Toolkit) for the tokenization of the

sentences to make the dataset suitable for processing by the model. The complete dataset has

been tokenized, allowing the model to map each distinct token to a corresponding embedding

vector.

At the beginning of the experiment were used Tensorflow’s tokenization module but during the

work, this text pre-processing was optimized to work with NLTK and Gensim.

We use Gensim's word2vec function that trains a skip-gram model. After cleaning and removing

rare words final training dataset contains about 35,505 reviews with a vocabulary size of 10,382

tokens. The maximum text length is 162 tokens.

3.2. Model

To make the model able to feed the discriminator directly from the generator output we are using

Autoencoders representation of the sentence. That way training autoencoders before adversarial

GAN training is a required step.

Since the generator and discriminator are fully connected networks, we create ResNet with

similar layers for both GAN components.

To stabilize the training process, we use the gradient penalty algorithm. Gradient penalty set a

restriction that requires the gradients of the discriminator's output relative to its inputs to have a
unit norm. During training, gradient penalty requires to train the discriminator more iterations

than the generator.

3.3. Autoencoders (AE) Training

After text pre-processing, we run autoencoders training. Autoencoders (AE) consist of encoder
and decoder components. The main purpose of AE is to learn how to compress text into low-

dimensional vectors, so we use Gated Recurrent Unit (GRU) layer for both components of

autoencoders. Decoder will try to reconstruct a sentence from a latent vector and hidden state.

By utilizing an encoder network to condense information about each phrase into a finite vector,

autoencoders are made to learn a low-dimensional representation of text. Reconstructing the input

representation from the vector is the job of a decoder network.

The encoder's latent representation and the prior hidden state are inputs utilized by the decoder to

create a probability distribution that is used to choose the word at that time step during sentence

reconstruction.

1 Code is available at: https://github.com/e8dev/scut_gan

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

9

Using trainable embedding layers to each AE helps to incorporate the pre-trained word
embeddings from our skip-gram model. This algorithm used teacher forcing in order to assure a

speedier and more reliable training process for the AEs.

For inference mode later we use the trained decoder to reassemble sentences from the output of
the generator. As a result, the decoder is able to input its earlier forecast for the following time

step. Inference mode is started by giving the generator's latent representation and the start of the

sequence token (we encoded <Start> as the start token). Following that, the decoder output is
projected onto the vocabulary size, and then we use a softmax operation to get tokens prediction.

The next word in the sequence needs to be chosen from the resultant probability distribution until

we get <End> token or text reaches its fixed maximum length.

Figure 2. Autoencoders training losses

3.4. Adversarial Training for GAN with an Applied Score to Discriminator’s Loss

Functions

After AE training is completed and AE model is able to encode text to latent space and decode it

back, we run adversarial training. Adversarial training heavily depends on the learning rate and

has specific problems related to that such as vanishing gradients or mode collapse.

In the experiment, we chose the learning rate after a few training attempts and faced the

vanishing gradient problem even using the Wasserstein space approach. With the learning rate of

0.001 and Adam optimizer, we faced a vanishing gradient problem, so we needed to change the
learning rate to 0.0001 to have stable GAN training.

In most cases, we need GAN to generate a wide range of outputs. But during training, we faced a
situation in which the generator produced the same result for each random input. Such a situation

is when the generator learns to only generate that output to make the discriminator thinks is a real

text called “mode collapse”.

The discriminator's best way is to learn to consistently reject that output if the generator begins to

consistently produce the same output. But, if the subsequent iteration of the discriminator is

getting stuck in a local minimum and fails to identify the optimal way, it will be far too simple

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

10

for the subsequent iteration of the generator to identify the discriminator's most likely result.
Every generator’s iteration overoptimizes for a certain discriminator, and the discriminator never

learns how to escape this local minimum. The generators, therefore, cycle through a constrained

number of outputs. Two of the best ways to overcome such a situation are:

a. Wasserstein loss – where discriminator learns to reject similar output of generator and

generator forced to produce a new output.

b. Unrolled GAN – where generator loss function takes not only current discriminator output
but also its future versions.

3.5. Results Evaluation

We trained the model using samples from the Amazon Reviews dataset. After training

autoencoders and constantly decreasing losses autoencoder model started to produce
reconstructed text correctly around the 20th epoch. During adversarial training discriminator and

generator, losses started to converge around the 20th epoch but only after the 100th epoch with a

learning rate of 0.0001 WGAN model started to produce output that can be qualified as
satisfying. Since this epoch model was able to generate text which more looks like positive

review text.

Figure 3. GAN training losses

Generated output examples (dataset is reviews about musical instruments):

“i have been playing guitar for <num> years and have had many different picks out there. these

are great, and they are very easy to hold on.”

“i bought this for my <num> year old son. he loves it. it is a great little amp for the price.”

The model demonstrated the ability to produce output similar to human-generated text with a

positive score. More training epochs with lower learning rates can increase the quality of a
generated text. The sequence length of generated text like training dataset sample and overall

satisfy requirements to output. Shorter sentences have better quality and are more predictable due

to the shorter distance between words.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

11

3.6. Adversarial Training with Controlled Output and Feedback Score

Differentiation

For this work, we changed GAN structure and added an additional input layer to GAN’s

generator model. The generator takes the real score value and generates “noise” with the same

shape as the text representation processed by AE’s encoder. Generator’s output and real text

representation we pass to the discriminator, and it is calculating losses.

With a learning rate of 0.0001 model was able to generate text and get context and its score

relation after 30-40 epochs. The model demonstrated the ability to control text output based on
feedback score value.

At some moment model became not able to produce diverse output and started to generate the
same texts again and again. This “mode collapse” happened when the generator finds data that

makes the discriminator to be fooled easily. This can be avoided by implementing additional

metrics and applying them as reward/penalty to the discriminator’s loss function.

Table 1. Results evaluation

Generated text

Real text to compare

BLEU

score

BERT

score (F1)

i bought this for my daughter

who is just starting out learning

how to play . it is a great learners

guitar , but for the price , it is a

wonderful ukulele .

i bought this set for my husband and

he is extremely happy ! he loves that

it hooks onto his drums so he can

grab one really fast if he drops one .

the bag is amazing ! its very good

quality nd all of the sticks match and
are very nice . it couldnt believe how

cheap they were when i told him !

0.0195

0.8584

i bought this for my daughter

who is just starting to play guitar

. she loves it . it is very light and

is very sturdy .

i always use elixirs for my electric

and acoustic guitars . they feel

awesome on your fingers , sound

smoother and last longer than any

other string ive ever used in about

<num> years of playing . the pick that

comes with this set are junk though ,

just toss them . i know theyre

expensive but sometimes you get

what you pay for .

0.00584

0.8489

great product . great packaging .
great price . great people to do

business with.mahalo nui loa (

hawaiian : thank you very much)

for fulfilling your obligation in a

glorious way.cheers

i bought this set for my husband and
he is extremely happy ! he loves that

it hooks onto his drums so he can

grab one really fast if he drops one .

the bag is amazing ! its very good

quality nd all of the sticks match and

are very nice . it couldnt believe how

cheap they were when i told him !

0.00308

0.8087

this is a great little dac for

enabling me to any music stand .

it is light enough to hold a lot of

keyboards and it works great .

these strings are really great ! martin

strings have a nice tone to them and

are also pretty sturdy . the tone is

mellow and it doesnt take too much

pressure to make a note . not to

mention the fact that it is a three pack
and in the event that one string breaks

0.03080

0.8494

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

12

you have two more to choose from .

this is a great buy !

i use this for my recording studio

. it is a great mic for the price . it

is very easy to use and a great

price .

i ordered this for a parts bass build i

was doing for a client . its a good

thing that i checked the thickness of

the bass headstock and the length of
the supplied screw . the screw is way

too long and would have come out on

the back side of the headstock .

0.0078

0.8530

i have used this pedal for over

<num> years and it has been a

great price . it is easy to use and

has a nice sound .

it was exactly what i was looking for .

perfect fit for a usa stratocaster

<num> hole guitar . came packed in a

nice sturdy flat packaging . wasnt

warped which is usually what

happens when you buy a pick guard

online .

0.0279

0.8546

i have used this pedal and it is a
great addition to my pedal board .

it does exactly what it is

supposed to do . it is a classic

distortion and a dirty ac booster

with the drive .

picks with no texture or friction
enhancement are old technology .

these pick are cutting edge . none

better . possibility created by the

multi flex feature and the grip .

awesome . these make me a better

player . i used to have trouble holding

on to picks . problem solved . stress

gone .

0.00984

0.8454

i have been playing guitar for

<num> years and have used many

different types of strings over the

years .

great feel to them and nice sounding .

they do seem to stay in tune a bit

longer but then they are thicker than

what i normally use . i think i will try
these in the super slinky

0.010070

0.8399

i have used elixir strings for years

and they are great

this is a nice pedal . appears to be

built good in a rugged case . i like to

use just a touch of phase to make my

guitar growl and this does the job

nicely ! cant beat it for the price !

0.003086

0.8499

this is a great little dac for

enabling me to any music stand .

it is light enough to hold a lot of

keyboards and it works great .

ive used these strings for years and

the tone and quality are top notch . its

good to experiment with others

brands as well , but you really cant

lose with these babies .

0.006337

0.8375

4. CONCLUSION

We successfully applied feedback score for text generation and got promising results in its simple
form and with controlled output. Our model can produce text reflecting the original feedback

score.

In table 1, we can see the results of generated samples and measured BLEU and BERT scores.
The BERT algorithm has a better ability to catch context without relying on sample length which

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

13

gives better results. Most of the generated samples have about 0.85 BERT score. BERT algorithm
correctly recognizes text context (in our case musical instruments) and gives a better score.

Generated texts are very well structured and show great potential to improve results in future

experiments. The abstract idea behind this feedback application can be used not only in
conversational or text-generation tasks but also in other areas.

4.1. Problems and Limitations

The model has tended to generate repetitive samples after some period of training. This “mode
collapse” is another problem that should be solved in future works by increasing the size of the

dataset or implementing additional metrics. In 2018 Richardson and Weiss [4] proposed a new

method named Number of “Statistically-Different” bins (NDB). This metric can be used to show

how generator sampling noise differs from defined fixed noise. Calculating this NBD metric
during training gives us the ability to reward or penalize GAN losses which makes the generator

produce more diverse output.

5. FUTURE RESEARCH

One of the most important parts of the conversational text is feedback because depending on the

response we can build the next part of the conversation and make a logical sequence. The

subjects of future research should become feedback and its types and forms. The feedback that
the model can use to score and evaluate answers can be not only represented as some integer

value but can take different shapes and types.

For example, those responses can be text messages, reading emotions (or reactions) from videos

and pictures, and evaluating responses accordingly, or they can be sensors’ signals from medical

devices. Future works can include the classification of such responses and each of these types
requires detailed work to make a correct interpretation of them.

Although GANs are relatively new in the field of machine learning, they have achieved

outstanding success in several areas, such as computer vision. It was successful in the field of
sequence production as well such as text generation, and this work's findings show different ways

to apply feedback in text generation tasks using GAN networks.

REFERENCES

[1] Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, (2017) “SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient”, arXiv:1609.05473v6 [cs.LG].

[2] Arjovsky, Martin, Soumith Chintala, and Léon Bottou, (2017) “Wasserstein generative adversarial

networks”, International conference on machine learning. PMLR.
[3] R. Zhang, Z. Wang, K. Yin, Z. Huang, (2019) “Emotional Text Generation Based on Cross-Domain

Sentiment Transfer”, IEEE Access, vol. 7, pp. 100081-100089, 2019, doi:

10.1109/ACCESS.2019.2931036.

[4] Eitan Richardson, Yair Weiss, (2018) “On GANs and GMMs", arXiv:1805.12462 [cs.CV].

[5] Tuan, Yi-Lin, and Hung-Yi Lee, (2019) “Improving conditional sequence generative adversarial

networks by stepwise evaluation”, IEEE/ACM Transactions on Audio, Speech, and Language

Processing. 2019. 27.4. 788-798.

[6] Salakhutdinov, R., (2009) “Learning deep generative models”, Ph.D. Dissertation, University of

Toronto.

[7] Silver D., Huang A., Maddison C. J., Guez A., Sifre L., (2016) “Mastering the game of go with deep

neural networks and tree search”, Nature, 529(7587), p. 484–489.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

14

[8] Srivastava, N., Hinton G. E., Krizhevsky A., Sutskever I., and Salakhutdinov, (2014) “Dropout: a

simple way to prevent neural networks from overfitting”, JMLR, 15(1):1929–1958.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, Illia Polosukhin, (2017) “Attention is all you need”, arXiv:1706.03762 [cs.CL].

[10] Donahue, David, and Anna Rumshisky, (2019) “Adversarial text generation without reinforcement
learning”, arXiv preprint, arXiv:1810.06640

[11] Jianmo Ni, Jiacheng Li, Julian McAuley, (2019) “Justifying recommendations using distantly labeled

reviews and fined-grained aspects”, Empirical Methods in Natural Language Processing (EMNLP).

[12] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,

(2016) “Improved techniques for training gans", NIPS

[13] Bengio, Y., Yao, L., Alain, G. and Vincent, P., (2013) “Generalized denoising auto-encoders as

generative models”, In Advances in Neural Information Processing Systems, Vol. 1, p. 899-907.

[14] S. Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei Guo, Ruhi Sarikaya, (2008) “Feedback-

Based Self-Learning in Large-Scale Conversational AI Agents”, arXiv:1911.02557v1 [cs.LG].

[15] Matthew Henderson, Paweł Budzianowski, Iñigo Casanueva, Sam Coope, Daniela Gerz, Girish

Kumar, Nikola Mrkšic, Georgios Spithourakis, Pei-Hao Su, Ivan Vulic, and Tsung-Hsien Wen,

(2019) “A Repository of Conversational Datasets”, arXiv:1904.06472 [cs.CL].
[16] Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, Hongyan Li, (2017) “Generative Adversarial

Network for Abstractive Text Summarization”, arXiv:1711.09357 [cs.CL].

AUTHORS

Dmitrii Kuznetsov is a Master's student from the South China University of Technology

who currently focuses on his research on NLP and generative neural networks. Having

extensive experience in software engineering, he applies practical knowledge to scientific

tasks.

	Abstract
	Keywords
	Neural Networks, Text generation, GAN networks, Autoencoders, Controlled text generation

