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ABSTRACT 
 
Large scale data storage is susceptible to failure.  As disks are damaged and replaced, traditional machine 

learning models, which rely on historical data to make predictions, struggle to accurately predict disk 

failures. This paper presents a novel method for predicting disk failures by leveraging multi-layer domain 

adaptive learning techniques.  First, disk data with numerous faults is selected as the source domain, and 

disk data with fewer faults is selected as the target domain.  A training of the feature extraction network is 

performed with the selected origin and destination domains.  The contrast between the two domains 

facilitates the transfer of diagnostic knowledge from the domain of source and target.  According to the 

experimental findings, it has been demonstrated that the proposed technique can generate a reliable 

prediction model and improve the ability to predict failures on disk data with few failure samples.  
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1. INTRODUCTION 
 

In today's era of big data, disk is the most common and widely used storage device. Despite its 
longevity, the disk is vulnerable to external environmental factors such as temperature, humidity, 

and collisions, and disk failures have become the norm. The study of predicting disk failures 

becomes essential due to the imperative need to avoid significant economic losses resulting from 
data loss. Upon the event of a fault, data recovery becomes unfeasible without a prior backup 

procedure, which entails intricate consequences and ramifications. Therefore, it is crucial to delve 

into the realm of disk fault prediction. 
 

The progression from passive fault tolerance methods, aimed at enhancing system reliability 

through duplication or code correction techniques, towards active fault tolerance SMART 

techniques for disks involves the monitoring of attribute value fluctuations. When the threshold 
value is surpassed, it indicates an impending failure within a specific timeframe. While data 

backups ensure security and reliability, their effectiveness is hindered by low accuracy rates. 

Researchers have conducted many studies based on the measured values of each attribute. Wang 
Yu et al. [1] presented a disk detection approach utilizing the Mahalanobis Distance (MD). Zhu 

Bing-peng et al. [2] employed both back-propagation neural network and an improved support 

vector machine model for disk failure prediction. To address experimental false positives, Jia 
Runying et al. [3] utilized the Adaboost algorithm to amalgamate BP neural networks. LSTM 

neural networks were utilized by Lima et al. [4] and Kang Yanlong [5] to achieve relatively 

favorable results in disk failure prediction. To tackle imbalanced disk data, Li Xinpeng et al. [6] 

proposed an enhanced Bagging-GB-DT algorithm for future data prediction.  Liu Xin et al. [7] 
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analyzed critical factors impacting disk failure using the Shapley Additive exPlanations (SHAP) 
model, providing advice for subsequent disk prediction. Zhu Hongbin et al. [8] developed a 

failure prognostication technique well-suited for household storage appliances, utilizing deep 

learning algorithms and validating its efficacy. Deng Ling et al. [ 9] examined the SMART data 

and used the random forest predictor to predict the remaining life of the disc. Based on the Light 
Gradient Boosting Machine (LightGBM) method, Tian Xuanyu et al. [10] proposed a model that 

can predict disk failures online, achieved a high failure detection rate, and solved the aging 

problem of the model by updating data online. To address the issue of data imbalance, one can 
implement solutions at the data level, thereby compensating for data insufficiency and enabling 

machine learning algorithms to attain accurate predictions. Jia et al. [11] employed the 

Conditional Tabular Generative Adversarial Networks (CTGAN) approach to tackle the issue of 
imbalance in disk data by generating new synthetic data at the data level. By combining the 

different GANs'advantages to generate data, Yuan et al. [12] used the ensemble learning method, 

then applied machine learning and neural network techniques to the prediction, ultimately 

producing a superior model. 
 

Traditional machine learning algorithms are trained on a large amount of disk failure data. As 

disks are damaged and replaced, the distribution of data between different types of disks is 
different, and due to the small amount of data, the model obtained from traditional machine 

learning training often fails to make good predictions in similar new areas. In many fields where 

machine learning is applied, the assumption of an independent and identical distribution of data 
often does not hold. Transfer learning and domain adaptation techniques can improve the 

effectiveness of machine learning models in cross-domain tasks. To eliminate the train-test 

mismatch for heterogeneous disks, we use domain-adaptive learning in transfer learning to build 

a well-established model for predicting disk failure. Using local maximum difference and other 
measures, we align the origin and destination domains in the common characteristic space, 

thereby improving the generalisation performance of the model, as mentioned in the paper 

[13][14][15]. 
 

References [16][17] describe many representative methods based on data and models in transfer 

learning and domain adaptation. Reference [18] describes a review of domain adaptation 

methods, based on domain distribution differences, confrontation, reconstruction. According to 
the literatures [19][20], we understand the relevant software reliability modeling foundation, 

standardize the current experiment, and obtain a model with high predictive performance, which 

is convenient for subsequent description with an approximate mathematical model. Domain 
adaptation and transfer learning have achieved significant maturity in various computer vision 

domains, encompassing picture categorization, goal identification, video analysis, and more. 

These techniques have also found extensive applications in domains such as medical imaging, 
transportation, recommendation systems, and others. However, their utilization in the field of 

disk failure prediction remains limited. 

 

In this paper, we introduce a transfer learning approach called Multi-layer Domain Adaptation 
(MDA) method. It leverages abundant previous data from intact models and limited fault samples 

from models with fewer failures for training purposes. At each layer, we incorporate maximum 

mean difference and other relevant adaptation metrics to enhance the performance of the 
proposed method. A transfer learning model is trained and constructed, efforts are undertaken to 

diminish the discrepancy in data distribution between the source and target domains, and the 

failure prediction of disc data with few faulty samples is improved. 
The following are key contributions of this research: 

 

1. Based on the domain-adaptive framework, make full use of deeper features instead of 

single-layer features. 
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2. Based on the classification loss, adding the maximum mean difference and correlation 
alignment together reduce the distribution difference between domains. 

3. The remaining article is structured as follows: ‘Section 2’ briefly introduces the 

theoretical background of transfer learning and domain adaptation. "Section 3" provides 

the experimental procedure. "Section 4" provides the related work and details of the 
methods. "Section 5 and discussions" provides an analysis and its comparison with other 

approaches. "Section 6" concludes the research with some future recommendations. 

4. This document describes, and is written to conform to, author guidelines for the journals 
of AIRCC series.  It is prepared in Microsoft Word as a .doc document.  Although other 

means of preparation are acceptable, final, camera-ready versions must conform to this 

layout.  Microsoft Word terminology is used where appropriate in this document.  
Although formatting instructions may often appear daunting, the simplest approach is to 

use this template and insert headings and text into it as appropriate. 

 

2. RELATED WORK 
 

2.1. Transfer Learning 
 

Transfer learning, a technique in machine learning, utilises existing knowledge in other domains 
where relevant information is scarce, thus alleviating the problem of insufficient data in the target 

domain. The objective of transfer learning is to generalize knowledge acquired in a specific 

domain to effectively address problems in other related or similar domains. This technique 
capitalizes on the shared characteristics between the domains to enable efficient knowledge 

transfer. Transfer learning has many application scenarios. It has already been used in literature 

[21][22][23][24][25][26] to detect crop pests, medical diseases, defects in bamboo leaves and 
faults in electrical loads. The predictive performance of the model can be greatly enhanced by 

transfer learning, which is far more effective than traditional machine learning methods when the 

current samples are insufficient. In the realm of disk failure prevention, there has been a growing 

adoption of transfer learning techniques in recent times. Zhang et al. [27] proposed a transfer 
learning method of TLDFP for disk failure prediction, using an iterative algorithm to update the 

weights and give more weight to hard to classify instances. Firstly, the Kullback-Leibler 

Divergence (KLD) value is used to select the source domain, and Jensen-Shannon Divergence 
(JSD) and Wasserstein Distance (WD) are also tested, which proves that the KLD method has 

better effectiveness. Gao et al. [28] first proposed using the maximum mean difference as an 

indicator for selecting the appropriate majority of disc model data as the source domain, and 

verified the effectiveness of their method. 
 

2.2. Domain Adaptation 

 
Given the scarcity of labeled data in the target domain, where a substantial volume is not 

available and a high performance machine learning model cannot be taught, model pre-training 
can be considered in an analogous but different auxiliary domain where a significant amount of 

labelled data can be obtained. Subsequently, by fine-tuning the pre-existing model to suit the 

unique characteristics of target domain, the practical challenge of insufficient fault data in target 
domain can be effectively addressed. However, the different distribution of data across domains 

becomes an obstacle to model transfer. The acquisition of a general model is aimed at adapting to 

a domain, so that the knowledge gained in a domain with abundant data can be applied more 

efficiently, thereby mitigating the challenge posed by limited data in the target domain. By using 
domain adaptation strategies, the disparity in data distribution between the two domains can be 

minimised, allowing domain-invariant knowledge to be transferred and reused between them. 

Zhao et al. [29] initially introduced domain adaptation to train a predictive model for disk failure, 
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employing a common feature representation across different domains. Jiang et al. [30] transform 
1D SMART attributes into 2D attributes as input for GAN's disk failure prediction method to 

process data, adopt 2D convolutional neural network as feature lifter, and combine classifier and 

domain discriminator to train classification, predict the probability of failure over a period of 

time. 
 

Our method incorporates Maximum Mean Difference (MMD) and Correlation Alignment 

(CORAL) in multi-layer domain adaptation as a metric loss to effectively minimize the 
distribution gap between the source and target domains, which can achieve better prediction 

results. 

 

3. EXPERIMENTS 
 

3.1. Experimental Data 
 
The dataset used in this study is sourced from the disk data published by Blackblaze in 2021.  

Blackblaze collected statistics from their data center, encompassing 170,000 disks and 255 

SMART attributes.  For the purposes of this paper, we have specifically chosen 9 attributes that 

are relevant to disk failure prediction.  These attributes include the initial values of two specific 
attributes and various types of disks that had the highest failure rates. This is a number of failed 

disks, such as ST4000DM000, ST8000DM002, ST12000NM001G, ST12000NM0007, 

ST8000NM0055, ST12000NM0008, ST500LM030, ST14000NM001G, ST14000NM0138, 
ST18000NM000J and ST10000NM0086. Based on the datasets consisting of affirmative and 

adverse samples, the construction of the source and target domains is carried out using a ratio of 

1:10. 
 

The 11 data items in table 1 are most closely related to changes in disk status among the selected 

SMART data after data analysis. The ID in the table is the original ID number of the data item in 

SMART, and the specific name of each selected data item is given. In particular, it should be 
noted that in SMART, each item is represented by two numerical forms, namely normal value 

and raw value. In the training data, the normal value is used for almost all data elements, except 

for 5 and 197. As the data analysis shows that their raw value may actually be more sensitive to 
changes in disc status, both raw and normal values are used for these two items. 
 

Table 1 Part ID codes and attribute names in SMART. 

 
 

Attributes ID Attributes Name Attributes Meaning 

1 read error rate Low-level data read error rate 

3 Spin-Up Time Disc boot time 

5 Real located Sector Count Relocation Sector Count 

5 (RAW) Real located Sector Count Relocation Sector Count 

7 Seek Error Rate Seek error rate 

9 Power-On Hours Disk power up time 

187 Reported Uncorrectable Errors Report uncorrectable errors 

189 High Fly Writes Head write height 

194 Temperature Temperature 

197 Current Pending Sector Count Pending reset sector count 

197 (RAW) Current Pending Sector Count Pending reset sector count 
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3.2. Data Preprocessing 

 
To prepare the extracted dataset for further analysis, it is crucial to perform eigenvalue 
normalization. This process ensures that the data is dimensionless and confined within the range 

of [-1,1]. To achieve this, a straightforward linear transformation function is employed for data 

normalization. Equation (1) outlines the specific definition and calculation of the normalization 

process. 
 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙 = 2 ∗  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 (1) 

 

The original value of the data is denoted by 𝑥 and 𝑥𝑛𝑜𝑟𝑚𝑎𝑙  is normalized by the equation. The 

equation's 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the maximum and minimum values of its current features, 

respectively. 

 

3.3. Evaluation Indicators 
 

To evaluate the model's reliability and accuracy in predicting disc failure, the disc failure samples 
are considered positive samples (labelled P) and the good disc samples are considered negative 

samples (labelled N). True (labelled T), False (labelled F). TP in Table 2 indicates that the model 

predicts the failed disk correctly. FP means the model is incorrectly predicting good samples. FN 
means the model predicted the failed disc incorrectly. TN means that the model correctly predicts 

good samples. G-mean is used based on the confusion matrix as shown in equation (2). When 

dealing with unbalanced affirmative and opposing samples, it makes more sense than accuracy 

and recall metrics. 
 

Table 2  Confusion Matrix. 

 

Category Predicted failure Predicted anormal 

Actually failure TP FN 

Actually normal FP TN 

 

𝐺 − 𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
∗

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2) 

 

4. METHODS 
 

4.1. Network Structure 
 

A fault prediction module and a domain adaptation module form the multi-layer domain 
adaptation network. The domain adaptation module mainly reduces the difference in data 

distribution between the two domains, allowing the feature extractor to learn general invariant 

features. The failure prediction module mainly uses the learned invariant features to predict disk 

failures. The domain adaptation module consists mainly of a multi-layer metric difference 
structure. Figure 1 illustrates the network architecture incorporating maximum distribution 

disparity and correlation alignment for aligning the two domains, consequently reducing the 

distribution difference between them. 
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Figure 1.  MDA network structure 

 

4.1.1. Failure Prediction Module 

 
The fault prediction module is composed of five elements: a data input segment, two fully 
connected segments, two activation segments, a dropout segment, and a softmax output 

classification segment. Of these, the output layer uses the softmax. Figure 1 presents the 

network’s main parameters. When checking the neuron count in the fully connected layer, 
experiments have yielded 64, 128, 256, 648 and 1024, with 256 being the highest. For the two -

layer activation layers, we chose the ReLu activation function. According to the literatures 

[31][32] Sigmoid function approximates the step function, which is also suitable for binary 

classification. In our experiment, we employ the Rectified Linear Unit (ReLU) activation 
function, which effectively addresses the issue of gradient vanishing. One-sided saturation can 

also make neurons more robust to noise interference. Using the ReLU activation function is also 

computationally efficient. And ReLU truncates negative values to 0, which introduces sparsity 
into the network and further improves computational efficiency. Then Dropout is used to avoid 

the problem of overfitting according to the structure of first big and then small, and the loss rate 

of neurons is set to 0.5. 

 

4.1.2. Domain Adaptation Module 

 

To mitigate the divergence between distributions, the domain adaptation module aims to 
minimize the dissimilarity by using the maximum mean difference and the corresponding 

orientation to measure the second order statistic (covariance) of the multi-layer features. This is 

accomplished by comparing MMD with only a single layer, CORAL with a single layer, and 
MMD with a double layer, CORAL for two layers, and MMD and CORAL for single layers to 

minimize distribution differences. 

 

Domain adaptation often relies on the utilization of loss functions, with the MMD being a widely 
favored choice in transfer learning scenarios. The equation (3) defines the distance between two 

domain distributions that are different but related. 

 

MMD = ||
1

n
∑ Q(Xi)

n

i=1

−
1

m
∑ Q(Yi)

m

j=1

| |𝐻
2                                                                                                               (3) 

 

where 𝑄() maps the data to the Reproducing Kernel Hilbert Space (RKHS), denoted by H. 

 

Let the training samples in the source domain 𝐷𝑆={𝑥𝑖}, 𝑥 ϵ ℝ𝑑, and their labels are 𝐿𝑆 = 𝑦𝑖, 𝑖 ϵ(1, 

…, L), the unlabeled target domain data 𝐷𝑇 = {𝑢𝑖}, 𝑢 ϵ ℝ𝑑, where 𝑑 can be understood as the 
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output number of the full connection layer of the network, that is, the number of neurons in the 

full connection layer. DS
ij

DT
ij
 represents the vector samples of the 𝑗th dimension of the 𝑖th source 

domain (target domain), CSCT represents the feature covariance matrix. 

 

Equation 4 illustrates the CORAL loss as the gap between two second-order domain statistics. 
 

𝑙𝐶𝑂𝑅𝐴𝐿 =   
1

4𝑑2
||𝐶𝑠 − 𝐶𝑇 ||𝐹

2                                                  (4) 

 

where ||·||𝐹
2 represents the Frobenius norm. From this, the data covariance of source and target is 

obtained as shown in equations (5) and (6). 

 

𝐶𝑆 =  
1

𝑛𝑆 − 1
(𝐷𝑆

𝑇𝐷𝑆 −
1

𝑛𝑆

(𝟏𝑇𝐷𝑆)𝑇(𝟏𝑇𝐷𝑆)) (5) 

𝐶𝑇 =  
1

𝑛𝑇 − 1
(𝐷𝑇

𝑇𝐷𝑇 −
1

𝑛𝑇

(𝟏𝑇𝐷𝑇)𝑇(𝟏𝑇𝐷𝑇)) (6) 

 

For the proposed multi-layer domain adaptation, MMD and CORAL are used to measure the loss 
of each layer and update the weights in real time. Equations (5) and (6), the feature covariance 

matrices of the source domain 𝐷𝑆 and the target domain 𝐷𝑇, are given by a column vector 1 with 

all elements equal to 1. The source and target domains' layer features are denoted by 𝐶𝑆 and 𝐶𝑇 , 

respectively. 
 

4.2. Optimization Target 
 

The MDA network has the following two optimization objectives: 

 

1) Minimize loss of classification for failure classes on the origin domain dataset. To ensure 
accurate identification of the disk's health status and proper training of the MDA 

network, calculating the classification loss is crucial. This loss can be expressed as the 

standard softmax classification loss in cross-entropy loss. 
 

2) In order to minimize the discrepancies between the source and target domains, various 

methods for domain adaptation have been proposed.  These methods aim to reduce the 

MMD and CORAL metric losses by considering multi-layer features from both domains. 
In addition, common features are extracted. To ensure model accuracy, the parameters of 

the network model can be updated while jointly minimizing the two-layer densely 

connected network by combining the aforementioned losses: classification loss, MMD 
loss, and CORAL loss. Generalization performance on, resulting in a stable model whose 

total loss is defined as equation (7). 

 

𝑙𝐿𝑂𝑆𝑆 = 𝑛 ∗ 𝑙𝐶𝐿𝐴𝑆𝑆 + ∑ 𝑥𝑖𝑙𝑀𝑀𝐷
𝑖

𝑡

𝑖=1

+  ∑ 𝑦𝑖𝑙𝐶𝑂𝑅𝐴𝐿
𝑖

𝑡

𝑖=1

(7) 

 

where 𝑡 represents the number of layers in the network that need to adapt to the CORAL loss; 𝑥𝑖 

and 𝑦𝑖are the domain adaptation loss weights under the corresponding layers; 𝑛 is the weight 

corresponding to the classification loss. In this paper, the weight of each layer is dynamically 

adjusted to allow the network to have better diagnostic performance in the target domain. This is 
done by measuring the proportion of each layer's loss to the total loss, and it has been found that 
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the loss value weight of each layer will have a greater effect on the network performance. To 

balance the three losses of 𝑙𝐶𝐿𝐴𝑆𝑆 , 𝑙𝑀𝑀𝐷  and 𝑙𝐶𝑂𝑅𝐴𝐿  in the training process, this is done. 

Dynamically adjusting the hyperparameters 𝑥𝑖, 𝑦𝑖, 𝑛 are shown in equations (8), (9) and (10). 

 

𝑥𝑖 =  
𝑙𝑀𝑀𝐷

𝑖

𝑙𝐶𝐿𝐴𝑆𝑆 + ∑ 𝑙𝑀𝑀𝐷
𝑖 + ∑ 𝑙𝐶𝑂𝑅𝐴𝐿

𝑖𝑡
𝑖=1

𝑡
𝑖=1

(8) 

𝑦𝑖 =  
𝑙𝐶𝑂𝑅𝐴𝐿

𝑖

𝑙𝐶𝐿𝐴𝑆𝑆 + ∑ 𝑙𝑀𝑀𝐷
𝑖 + ∑ 𝑙𝐶𝑂𝑅𝐴𝐿

𝑖𝑡
𝑖=1

𝑡
𝑖=1

(9) 

𝑛 =  
𝑙𝐶𝐿𝐴𝑆𝑆

𝑙𝐶𝐿𝐴𝑆𝑆 + ∑ 𝑙𝑀𝑀𝐷
𝑖 + ∑ 𝑙𝐶𝑂𝑅𝐴𝐿

𝑖𝑡
𝑖=1

𝑡
𝑖=1

(10) 

 
By using the three losses mentioned above, the first fully connected layer to be trained can 

simultaneously reduce the classification loss, the MMD loss, and the CORAL loss. This allows 

the parameters of the network model to be updated, and the total loss is expressed as the equation 

(11). 

𝑙𝐿𝑂𝑆𝑆 = 𝑛 ∗ 𝑙𝐶𝐿𝐴𝑆𝑆 + ∑ 𝑥𝑖𝑙𝑀𝑀𝐷
𝑖

𝑡

𝑖=1

+  ∑ 𝑦𝑖𝑙𝐶𝑂𝑅𝐴𝐿
𝑖

𝑡

𝑖=1

(11) 

 

By combining the two losses previously proposed, the classification and CORAL losses can be 

jointly minimized in the two-layer fully connected layer to modify the parameters of the network 

model, with the total loss expressed as equation (12). 
 

𝑙𝐿𝑂𝑆𝑆 = 𝑛 ∗ 𝑙𝐶𝐿𝐴𝑆𝑆 +  ∑ 𝑦𝑖𝑙𝐶𝑂𝑅𝐴𝐿
𝑖

𝑡

𝑖=1

(12) 

 

By combining the two losses previously proposed, the classification and MMD losses can be 
jointly minimized in the two-layer fully connected layer to modify the parameters of the network 

model, with the total loss expressed as equation (13). 

 

𝑙𝐿𝑂𝑆𝑆 = 𝑛 ∗ 𝑙𝐶𝐿𝐴𝑆𝑆 +  ∑ 𝑥𝑖𝑙𝑀𝑀𝐷
𝑖

𝑡

𝑖=1

(13) 

 
By giving the CORAL loss a large weight to GAMMA and combining the two losses mentioned 

above, the classification loss and the MMD loss in the first fully connected layer can be 

minimized simultaneously, with the MMD loss being given a significant weight, the parameters 

of the network model being adjusted, and the total loss being expressed as equation (14). 
 

𝑙𝐿𝑂𝑆𝑆 = 𝑙𝐶𝐿𝐴𝑆𝑆 +  𝐺𝐴𝑀𝑀𝐴 ∗ 𝑙𝐶𝑂𝑅𝐴𝐿 (14) 
 
By giving the MMD loss a large weight to GAMMA and combining the two losses mentioned 

above, both the classification and MMD losses in the first fully connected layer can be minimized 

simultaneously, with the MMD loss given a significant weight, the parameters of the network 

model adjusted, and the total loss expressed as equation (15). 
 

𝑙𝐿𝑂𝑆𝑆 = 𝑙𝐶𝐿𝐴𝑆𝑆 +  𝐺𝐴𝑀𝑀𝐴 ∗ 𝑙𝑀𝑀𝐷 (15)
 

5. RESULTS AND DISCUSSIONS 
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For verifying the effectiveness of multi-layer domain adaptive learning method in predicting disk 
failure, a comparison is made with a single-layer domain adaptive learning model and a model 

without domain adaptive learning. As the target field, Figures 2, 3 and 4 display the experimental 

results, which were initially determined by the disk with the most defective data. 

 

 
 

(a) ST14000NM001G to ST4000DM000         (b) ST1400ONM001G to ST8000NM0055 

 
Figure 2.ST50OLM030 to ST4000DMO00 and ST18000NM000J to ST4000DM000 

 

 
 

(a) ST12000NMO01G to ST8000NM0055           (b)ST12000NM001G to ST4000DM000 

 
Figure 3. ST12000NMO01G to ST8000NM0055 and ST12000NM001G to ST4000DM000 
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(a) ST14000NM001G to ST400ODM000      (b)ST14000NM001G to ST8000NMO055 

 
Figure 4. ST14000NMO01G to ST4000DMO00 and ST14000NMO01G to ST8000NM0055 

 

Experiments show that a small number of failed disk data disks are not suitable for domain 

adaptation as the source domain, and negative migration occurs. In contrast to Single-layer and 
Double-layer CORAL, MMD, Multi-Kernel Maximum Mean Difference (MK_MMD), Joint 

Maximum Mean Discrepancy (JMMD) and other methods, this paper's proposed multi-layer 

domain adaptation method still performs better. 

 
Table 3, 4, 5, 6, 7 and 8 dispaly the recognition rates of three disks with a limited number of 

breakdowns as the target domain. 

 
Table 3: G-mean score for ST10000NM0086 type disk 

 

Source domain ST4000DM000 ST8000DM002 ST12000NM001G 
ST12000NM0

007 

Target domain 
ST10000NM0086 ST10000NM0086 ST10000NM0086 ST10000NM0

086 

Target-only 0.7071 0.7071 0.7071 0.7071 

Source-only 0.7388 0.5503 0.8295 0.8575 

Single-layer 

CORAL 
0.8737 0.9039 0.8478 0.8786 

Double-layer 

CORAL 
0. 7872 0.8478 0.8898 0.8590 

Single-layer 

MMD  
0.8553 0.8704 0.7890 0.8802 

Double-layer 

MMD  
0.8753 0.8891 0.8088 0. 8786 

Single-layer 

Coral+MMD 
0.8959 0.8891 0.8298 0.8802 

Double-layer 

Coral+MMD 
0.8753 0.8898 0.8332 0.8981 

 

 

 

 
 

 
Table 4 G-mean score for ST10000NM0086 type disk 

 

Sourcedomain 
ST8000NM0055 

ST12000NM0008 ST14000NM0138 
ST14000NM0

01G 

Target domain 
ST10000NM0086 ST10000NM0086 ST10000NM0086 ST10000NM0

086 

Target-only 0.7071 0.7071 0.7071 0.7071 

Source-only 0.7105 0.5503 0.7454 0.8671 
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Single-layer 

CORAL  
0.8773 0.8753 0.9143 0.8357 

Double-layer 

CORAL  
0.8023 0.7696 0.8347 0.8081 

Single-layer 

MMD  
0.8089 0.8874 0.8755 0.8704 

Double-layer 

MMD  
0.8247 0.8874 0.9126 0.8942 

Single-layer 

Coral+MMD 
0.8263 0.9143 0.9126 0.8786 

Double-layer 

Coral+MMD 
0.8474 0.8925 0.9126 0.8959 

 
 

Table 5 G-mean score for ST500LM030 type disk 

 

Source domain ST4000DM000 ST8000DM002 ST12000NM001G 
ST12000NM0

007 

Target domain ST500LM030 ST500LM030 ST500LM030 ST500LM030 

Target-only 0.0000 0.0000 0.0000 0.0000 

Source-only 0.3389 0.4289 0.3524 0.3524 

Single-layer 
CORAL  

0.3535 0.4316 0.3535 0.3535 

Double-layer 

CORAL  
0.5994 0.4302 0.7315 0.6519 

Single-layer 

MMD  
0.5434 0.4952 0.3535 0.3535 

Double-layer 

MMD  
0.7071 0.4952 0.6748 0.5768 

Single-layer 

Coral+MMD 
0.7090 0.4316 0.3535 0.7120 

Double-layer 

Coral+MMD 
0.7071 0.4905 0.6748 0.5768 

Table 6 G-mean score for ST500LM030 type disk 

 

Source domain 
ST8000NM0055 

ST12000NM0008 ST14000NM001G 
ST14000NM0

138 

Target domain ST500LM030 ST500LM030 ST500LM030 ST500LM030 

Target-only 0.0000 0.0000 0.0000 0.0000 

Source-only 0.3963 0.3524 0.3513 0.4276 

Single-layer 

CORAL  
0.4841 0.3535 0.3535 0.3535 



International Journal on Cybernetics & Informatics (IJCI) Vol.12, No.6, December 2023 

32 

Double-layer 

CORAL 
0.4201 0.6531 0.5430 0.5146 

Single-layer 

MMD  
0.4302 0.4759 0.5236 0.5236 

Double-layer 

MMD  
0.3535 0.4960 0.6789 0.6293 

Single-layer 
Coral+MMD 

0.4289 0.3535 0.5775 0.7207 

Double-layer 

Coral+MMD 
0.4330 0.4960 0.6760 0.6293 

 
Table 7 G-mean score for ST18000NM000J type disk 

 

Source domain ST4000DM000 ST8000DM002 ST12000NM001G 
ST12000NM0

007 

Target domain 
ST18000NM000J ST18000NM000J ST18000NM000J ST18000NM0

00J 

Target-only 0.0000 0.0000 0.0000 0.0000 

Source-only 0.0000 0.0000 0.3873 0.000 

Single-layer 

CORAL 
0.6892 0.6324 0.7416 0.0000 

Double-layer 

CORAL  
0.7071 0.6892 0.7071 0.5244 

Single-layer 

MMD  
0.7071 0.5000 0.5916 0.7071 

Double-layer 
MMD 

0.7071 0.7416 0.4183 0.5700 

Single-layer 
Coral+MMD 

0.6892 0.7071 0.6892 0.7071 

Double-layer 
Coral+MMD 

0.8944 0.7071 0.7071 0.8062 

 

Table 8 G-mean score for ST18000NM000J type disk 

 

Source 
domain 

ST8000NM0055 
ST12000NM0008 ST14000NM001G ST14000NM0138 

Target 

domain 

ST18000NM000J ST18000NM000J ST18000NM000J ST18000NM000J 

Target-only 0.0000 0.0000 0.0000 0.0000 

Source-only 0.0000 0.0000 0.0000 0.0000 
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Single-layer 
CORAL  

0.7071 0.7071 0.7071 0.7416 

Double-layer 

CORAL 
0.7071 0.7071 0.6324 0.7416 

Single-layer 

MMD 
0.7071 0.7071 0.7071 0.6708 

Double-layer 
MMD  

0.7071 0.0000 0.8366 0.5916 

Single-layer 

Coral+MMD 
0.7071 0.8062 0.7071 0.7071 

Double-layer 

Coral+MMD 
0.9219 0.9219 0.8366 0.7071 

 
It is clear from the experiments that when the model disk with less fault data is used as the target 

domain, the domain adaptive learning method is not added, and only training by itself and adding 

the source domain is performed. It compares the basic prediction effectiveness of the multi-layer 

domain adaptation proposed in this study with other existing domain adaptation methods across 
eight different target domains. The results consistently demonstrate that the multi-layer domain 

adaptation outperforms alternative approaches in terms of predictive performance and it solves 

the problems of small sample number, insufficient reference number, and low fault prediction 
performance. 

 

Single-layer domain adaptation only adjusts the features of a single layer, missing useful features 
extracted by other higher layers. Adopting multi-layer domain adaptation can make full use of 

more and deeper extracted features. By training the model to extract more deep common features, 

the two domains can be better aligned, and enhancement of the model's performance in predicting 

failures can be achieved. 
 

6. CONCLUSIONS AND OUTLOOKS 
 

This study delves into the challenge of low failure prediction performance arising from the 
limited availability of faulty disk data in storage systems. We propose a multi-layer domain 

adaptive learning method that uses neural networks to extract multi-layer features and fully 

exploits all extracted features during domain adaptation. By dynamically adjusting the weighting 

parameters of each layer's loss function, the disparity between the two fields is reduced and the 
model's predictive performance is improved. 

 

In the next step, we will further explore the use of the relationship between multiple source 
domains and target domains, as well as the relationship between different source domains, so as 

to improve the fault prediction performance of the target domain. At the same time, explore the 

advantages of the cumulative function approaching the step function method and the currently 

used ReLu activation function method, and try to propose an approximate mathematical model. 
For example, according to the consideration, analogy with the existing model in the field of 

debugging and testing theory, using the dynamic difference model to describe etc. and take an 

explicit mathematical description of the transfer function-generated generic activation function. 
Finally, it is fervently hoped that the research in this paper can be utilized in storage systems and 

bring certain social benefits. 
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