
Evaluating prompt-learning-based API review

classification through pre-trained models

Xia Li, Allen Kim

The Department of Software Engineering and Game Design and
Development,

Kennesaw State University,
Marietta, USA

Abstract. To improve the work efficiency and code quality of modern software development,
users always reuse Application Programming Interfaces (APIs) provided by third-party libraries
and frameworks rather than implementing from scratch. However, due to time constraints in soft-
ware development, API developers often refrain from providing detailed explanations or usage
instructions for APIs, resulting in confusion for users. It is important to categorize API reviews
into different groups for easily usage. In this paper, we conduct a comprehensive study to evaluate
the effectiveness of prompt-based API review classification based on various pre-trained models
such as BERT, RoBERTa, BERTOverflow. Our experimental results show that prompts with com-
plete context can achieve best effectiveness and the model RoBERTa outperforms other two models
due to the size of training corpus. We also utilize the widely-used fine-tuning approach LoRA to
evaluate that the training overhead can be significantly reduced (e.g., 50% reduction) without the
loss of the effectiveness of classification.

Keywords: Software engineering, API review classification, pre-trained models, fine-tuning

1 Introduction

Software systems have been widely used in almost all aspects of human life in recent
decades, making our lives more and more convenient. To improve the work efficiency
and code quality of modern software development, users always reuse Application
Programming Interfaces (APIs) provided by third-party libraries and frameworks
rather than implementing from scratch. For example, the Java Software Develop-
ment Kit (Java SDK) provides many packages for users to conveniently reuse the
APIs. Python also provides a lot of APIs to interact with Amazon Web Services
(AWS), which is one of the most popular cloud service providers, to reduce both
development time and effort. However, due to time constraints in software develop-
ment, API developers often refrain from providing detailed explanations or usage
instructions for APIs, resulting in confusion for users. Previous studies [2] have re-
vealed that API documentation frequently faces significant quality issues, including
incompleteness, outdated information, and inaccuracies. To find better and practi-
cal explanation of APIs, users typically turn to popular Q&A platforms like Stack

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

Bibhu Dash et al: CSEAI, SCDD, CIOS - 2025
pp. 01-11, 2025. IJCI – 2025 DOI:10.5121/ijci.2025.140301

https://ijcionline.com/volume/v14n3
https://doi.org/10.5121/ijci.2025.140301
https://doi.org/10.5121/ijci.2025.140301

Overflow1 to find API information that suits their needs. These platforms host
reviews where developers discuss various aspects of APIs, such as usability, docu-
mentation, performance, etc. By identifying the specific focus or classification of a
review, developers can more easily access the information that is most relevant to
their requirements. This emphasizes the importance of developing automated tech-
niques that can effectively categorize API reviews into different groups. To date,
various machine learning techniques have been used to improve the performance of
API review classification. Uddin et al. [3] was the first to categorize API reviews into
different predefined aspects, such as usability or security. Uddin et al. also suggested
a machine learning-based technique [4] to label Stack Overflow sentences with var-
ious categories. Lin et al. [5] developed a pattern-driven approach to classify API
opinions from Q&A platforms into specific categories. Recently, pre-trained founda-
tion models, such as BERT [15] and GPT [18], have gained significant performance
across diverse AI domains, including natural language processing (NLP), computer
vision (CV), and graph learning (GL). These models have been successfully applied
to various downstream tasks, including text classification [16] and image classifi-
cation [17]. In the field of API review classification, pre-trained models have also
shown promising results. For example, Yang et al. [6] evaluated the aspect-based
API review classification task by fine-tuning six pre-trained models and compared
them on a widely-used API review benchmark. However, a study [19] demonstrates
that there are gaps between general pre-trained models and specific classification
tasks since pre-trained models is only used to generate an embedded tokens that
are used for traditional downstream tasks. Thus, the power of pre-trained models
is not fully utilized. To bridge this gap, certain prompts can be appended after the
input sequence and the target task is masked so that pre-trained models can predict
the masked label then [19]. Furthermore, the current survey on prompt engineering
[21] shows that varying prompts can influence the performance of the pre-trained
models, highlighting the importance of evaluating the effect of different prompt
templates and the need to evaluate their influence on API review classification.
In this paper, we conduct a comprehensive study to evaluate the effectiveness of
prompt-based API review classification based on various pre-trained models such
as BERT [15], RoBERTa [1], BERTOverflow [14]. We also utilize the widely-used
fine-tuning approach LoRA to demenstrate that the training overhead can be sig-
nificantly reduced (e.g., 50% reduction) without the loss of the effectiveness of
classification.

The paper is organized as follows. In Section 2, we provide an overview of related
studies on API review classification. In Section 3, we describe the methodology used
in our study. Sections 4 and 5 present the experimental setup and analysis of the
results, respectively. We address the potential threats to the validity of our findings
in Section 6 and conclude the paper in Section 7.

1 https://stackoverflow.com/

2

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

2 Related Work

In this section, we discuss some related studies of API review classification and
pre-trained models for software engineering.

2.1 API review classification

Uddin et al. [3] proposed to categorize API reviews into different predefined as-
pects, such as usability or security. They also suggested a machine learning-based
technique [4] to label Stack Overflow sentences with various categories. Lin et
al. [5] developed a pattern-driven approach to classify API opinions from Q&A
platforms into specific categories. Yang et al. [6] evaluated the aspect-based API
review classification task by fine-tuning six pre-trained models and compared them
on a widely-used API review benchmark. Zhang et al. [7] used sentiment analysis to
extract problematic API features from online discussions. Ahasanuzzaman et al. [8]
concentrated on detecting API-related posts on Stack Overflow and developed a
supervised learning approach called CAPS based on five different dimensions and
Conditional Random Field (CRF) technique. Treude et al. [9] employed machine
learning techniques to identify insightful API-related sentences from Stack Overflow
discussions and leveraged these findings to improve API documentation.

2.2 Pre-trained models for Software Engineering

Nowadays, pre-trained models have been widely used in various fields of software
engineering. Hey et al. [22] proposed NoRBERT to fine-tune BERTmodel and apply
it to different tasks for requirements classification. CodeBERT [10], a transformer-
based model pre-trained on a large-scale corpus of code from GitHub, has been
widely used for tasks like code summarization and completion. Zeng et al. [11] per-
formed an extensive study of eight pre-trained models for program understanding
and generation. Luo et al. [20] proposed PRCBERT for requirement classification
using BERT model by applying prompt templates for accurate requirements classi-
fication. Xia et al. [12] performed extensive studies on directly applying pre-trained
models for automated program repair.

3 Study Design and Approach

In this section, we introduce the general process of our study shown in the Figure
1. We describe the key approaches such as data preprocessing (Section 3.1), new
input creation based on prompt templates (Section 3.2) and the LoRA fine-tuning
approach(Section 3.3).

3

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

API review data New input creation Pre-trained model Lora fine-tuning API review classification

Fig. 1. Overall process of the study

3.1 Data preprocessing

In our study, we use the dataset created by Uddin et al. [3], including 4,522 sentences
extracted from 1,338 Stack Overflow posts where users discussed and reviewed
various APIs. The distribution of the dataset is shown in Table 1. Please note that
each sentence is manually labeled with one or more API review categories. In our
paper, we only use 4,307 sentences that are associated with a single API review
category. We pre-process the dataset using common natural language processing
techniques, including stemming, lemmatization, stop-word removal, and conversion
to lowercase, utilizing the widely used NLTK toolkit2. We then generate various
prompts based on the new dataset as the input of pre-trained models for API review
classification.

Table 1. Distribution of API review categories

Category Number of Instances Category Number of Instances

Performance 348 Usability 1,437
Security 163 Community 93
Bug 189 Compatibility 93

Portability 70 OnlySentiment 348
Documentation 256 Legal 50

Others 1,699

3.2 Prompt engineering

Conventional classification tasks often rely on pre-trained models to extract a fixed
vector representation of the input sequence. This representation is subsequently
processed by an additional neural network, such as an RNN or CNN, to predict
the various classes. However, this approach leads to a weak correlation between
the input sequence and the final classification task. To address this issue, our study

2 https://www.nltk.org/

4

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

adopts an alternative approach inspired by a study called Pattern-Exploiting Train-
ing (PET) [19]. In details, we perform the following two tasks by modifying original
input sentences as the new input that is compatible with pre-trained models for
API review classification. First, we insert a masked label as a special token into the
original sentence to generate a new input. The masked label will be the target value
for prediction during the training process. We use the cross-entropy loss function to
fine-tune the parameters of pre-trained models based on the difference between the
actual value and the predicted value of the masked label. Cross-entropy is chosen
because API review classification is the classic multi-class classification problem. By
embedding the target label prediction directly into the model’s input, our approach
strengthens the connection between the input sequence and the classification ob-
jective, enabling a more precise and effective fine-tuning process. Second, we design
and evaluate various prompt templates for API review classification. The intuition
is that pre-trained models (e.g., GPT, BERT) are highly sensitive to prompt vari-
ations based on recent work related with prompt engineering [21], which has been
applied in the field of software engineering. For example, prior research [20] has
demonstrated that the manually inserted prompts can significantly improve perfor-
mance in the area of software requirements classification. However, the impact of
different prompts on API review classification remains unexplored. To illustrate our
approach, we use the API review sentence “You could even put the unexpected state
your getter found in the exception message” as an example, which is categorized
in the ”Bug” category in the dataset. In details, we design and experiment with
multiple prompt templates by inserting them at different positions in the original
API review sentences. Figure 3.2 presents the templates used in our study. In these
templates, [CLS] represents a special token used by the pre-trained models (e.g.,
BERT [15]) at the beginning of the input text, while [SEP] is a separator token
that marks the boundary between different sentences. The masked token [M] cor-
responds to the API review category (e.g., performance, security, portability) that
the pre-trained models predict. This approach allows us to systematically analyze
how different prompt designs influence the model’s classification performance.

3.3 Lora fine-tuning

Fine-tuning pre-trained language models (e.g., BERT, GPT-3, LLaMA) for specific
tasks is essential to enhance their performance. However, updating all parameters
of these models is often impractical due to their immense size (e.g., 175 billion
parameters for GPT-3). To address this challenge, LoRA (Low-Rank Adaptation)
offers a more efficient alternative by drastically reducing the number of trainable
parameters. In our study, we investigate if LoRA can maintain the effectiveness of
API review classification with fine-tuning all parameters while significantly reducing
computational overhead.

5

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

Fig. 2. Prompt templates

Template 1:
[CLS] You could even put the unexpected state
your getter found in the exception message.
[SEP]
This API review is for [M]. [SEP]

Template 2:
[CLS] Following sentence is an API review for
[M].
[SEP] You could even put the unexpected state
your getter found in the exception
message.[SEP]

Template 3:
[CLS] Given the following statement: “You
could even put the unexpected state your
getter found in the exception message”[SEP]
Question: what type of API review is it? [SEP]
Answer: [M] [SEP]

Template 4:
[CLS] “You could even put the unexpected
state your getter found in the exception
message“ is an API review related to [M]. [SEP]

LoRA works by freezing the pre-trained model’s original weights while intro-
ducing two smaller matrices holding the updated weights through low-rank decom-
position. This approach allows the model to adapt to input data while minimizing
the number of parameters that need to be trained. Specifically, the original weight
matrix W0 (with size d×d) keeps unchanged while ∆W is the new updated weights
with the same size d × d size. LoRA also introduces a new parameter r to reduce
the size of the matrix ∆W to split into two smaller matrices, A and B, with size of
r × d, and d× r. During training process with LoRA, only the weights of matrices
A and B are updated. The updated weights can be merged with the weights of the
base model. After the training process, the new input with size of 1 × d will be
multiplied by both W and ∆W, resulting in two output vectors with size d. The
two vectors are then concatenated element-wise to get a final vector with size h.

4 Experimental Design

In this section, we introduce the experimental design of our study including sam-
pling strategy (Section 4.1) and the experimental configuration (Section 4.2).

4.1 Sampling strategy

From the table 1 in section 3.1, we can find that the dataset is imbalanced, with
varying numbers of instances across different categories. For example, the propor-
tion of each API review category ranges from 1.1% (e.g., Portability) to 37.6%. We
utilize the sampling strategy inspired by Uddin et al [13] who addressed this issue.
Specifically, for each API review category, we consider all corresponding instances
as positive samples, while the remaining instances from other categories are treated
as negative samples.

6

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

4.2 Experimental configuration

In our study, we use three foundation pre-trained models BERT [15], RoBERTa [1],
BERTOverflow [14] that can be downloaded from the popular AI community Hug-
ging Face3. BERT and RoBERTa are pre-trained on natural languages while BERTOver-
flow is pre-trained on corpus extracted from the posts on Stack Overflow. For the
hyperparameter, we set the maximum input sequence length as 256, batch size
as 8, learning rate as 5e−5, epochs as 16. We use the popular evaluation metrics
precision, recall and F1 score for classification problems as follows.

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2× Precision× Recall

Precision + Recall

Where TP indicates the number of True Positives, FP indicates the number of False
Positives and FN is the number of False Negatives. We use AdamW optimizer
[23] during the training process. We use 80% of the original dataset as training
set and 20% of original dataset as test set. We apply the 10-fold cross-validation
for each prompt introduced in Section 3.2. Please note that we apply such cross-
validation for each category under the sampling strategy introduced in Section 4.1.
The training and inference steps of the API review classification are executed on
a computer with Intel Core 13900K CPU, 32GB memory and NVIDIA RTX 4090
GPU.

5 Results Analysis

In this paper, we investigate the following two research questions:

– RQ1: How is the effectiveness of API review classification based on various
prompt templates?

– RQ2: How is the efficiency of API review classification by LoRA fine-tuning?

5.1 Effectiveness of API review classification based on various prompt
templates

In this RQ, we investigate the performance of API review classification on the
three pre-trained models: BERT, RoBERTa and BERTOverflow based on the four
prompt designs in the Section 3.2. Table 2 shows the results based on the four

3 Hugging Face. https://huggingface.co/

7

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

templates in terms of the evaluation metrics precision, recall and F1 score. Please
note that we calculate the average values of the 10-fold cross-validation for each
category. We finally get the average values of the metrics across 9 categories in the
table 1. From the results, we have the following findings. First, we can find that
the performance of template 3 is better than other templates. The possible reason
is that template 3 provides a complete context (“question” and “answer”) that
can let pre-trained models thinking and reasoning. Second, the overall performance
of BERTOverflow is worse than other two models for all metrics. For example,
the F1 score of BERTOverflow for template 1 is 81.86% while the F1 score of
RoBERTa is 83.31%. The F1 score of BERTOverflow is also less than BERT for
all templates. The possible reason is that the size of training data of BERT (3.3
billion words) is much larger than the size of BERTOverflow (only 152M sentences).
Similarly, RoBERTa is better than BERT due to the larger size of training corpus
and dynamic masking during their training process [1]. This result shows that even
we utilize useful prompt templates, the training corpus size of pre-trained models
still plays the most important role for the classification task.

Table 2. Effectiveness of API review classification based on various prompt templates

Templates Models Avg Precision Avg Recall Avg F1 Score

Template 1
RoBERTa 82.92% 83.71% 83.31%
BERT 81.53% 82.35% 81.94%

BERTOverflow 81.47% 82.25% 81.86%

Template 2
RoBERTa 83.68% 84.14% 83.91%
BERT 84.12% 83.58% 83.85%

BERTOverflow 81.97% 81.24% 81.60%

Template 3
RoBERTa 84.29% 84.98% 84.63%
BERT 84.63% 83.86% 84.24%

BERTOverflow 83.11% 82.33% 82.72%

Template 4
RoBERTa 83.84% 83.19% 83.51%
BERT 84.76% 83.47% 84.11%

BERTOverflow 82.58% 82.56% 82.57%

Table 3. Performance of three models with and without LoRA

RoBERTa BERT BERTOverflow

Without LoRA 12m 20s 11m 15s 10m 20s
With LoRA 7m 14s 6m 32s 5m 12s

8

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

5.2 Efficiency of API review classification by fine-tuning

In this RQ, we investigate the performance and efficiency of API review classifi-
cation by using LoRA fine-tuning. Table 3 shows the average training time across
the 9 categories for the three pre-trained models based on the template 3. From
the table, we can find that LoRA significantly reduces the training time, indicat-
ing that it optimizes computational efficiency. For example, the training time with
RoBERTa shows a 42% speed-up (from 12m 20s to 7m 14s), and the training time
with BERTOverflow achieves a 50% improvement (from 10m 20s to 5m 12s). This
suggests that LoRA fine-tuning reduces the training overhead due to its efficient
parameter tuning approach that avoids full model fine-tuning. We also compare the
performance of classification of RoBERTa model with and without fine-tuning in
Table 4. We can find that with LoRA, the performance slightly decreases by 4%
(e.g., from 84.63% to 80.69% in terms of F1 score). This trade-off suggests that
while LoRA leads to a small reduction in predictive performance, it can improve
training efficiency for the API review classification. Such finding can provide the
guidance that LoRA can be preferable for applications where speed is more critical
than minor accuracy losses.

Table 4. Efficiency of classification with and without LoRA for RoBERTa

Avg Precision Avg Recall Avg F1 Score

Without LoRA 84.29% 84.98% 84.63%
With LoRA 80.13% 81.25% 80.69%

6 Threats to Validity

The main external threat to the validity is the dataset we used. In our study, we use
the widely used dataset collected by Uddin et al. [13] for API review classification.
But the dataset is imbalance, leading to the model misinterpreting the words from
the beginning. In future, more dataset can be used to evaluate the performance of
prompt-based API review classification.

7 Conclusion

In this paper, we conducted a comprehensive study to evaluate the performance
of prompt-based API review classification by designing various prompt templates
on pre-trained models. Our experimental results show that prompts with complete
context can achieve best effectiveness and the model RoBERTa outperforms other
two models due to the size of training corpus. Also, LoRA fine-tuning can achieve
similar performance but significantly reduce the training overhead.

9

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

References

1. Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen,
Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin. Roberta:
A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692, 2019

2. Uddin, Gias and Robillard, Martin P. How API documentation fails. Ieee software. 2015.
3. Uddin, Gias and Khomh, Foutse. Mining api aspects in api reviews. Technical report.2017
4. Uddin, Gias and Khomh, Foutse. Automatic summarization of API reviews. 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE). 2017
5. Lin, Bin and Zampetti, Fiorella and Bavota, Gabriele and Di Penta, Massimiliano and Lanza,

Michele. Pattern-based mining of opinions in q&a websites. 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 2019

6. Yang, Chengran and Xu, Bowen and Khan, Junaed Younus and Uddin, Gias and Han, Donggyun
and Yang, Zhou and Lo, David. Aspect-based api review classification: How far can pre-trained
transformer model go? 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 2022

7. Zhang, Yingying and Hou, Daqing. Extracting problematic API features from forum discussions.
2013 21st International Conference on Program Comprehension (ICPC). 2013

8. Ahasanuzzaman, Md and Asaduzzaman, Muhammad and Roy, Chanchal K and Schneider,
Kevin A. Classifying stack overflow posts on API issues. 2018 IEEE 25th international confer-
ence on software analysis, evolution and reengineering (SANER). 2018

9. Treude, Christoph and Robillard, Martin P. Augmenting API documentation with insights from
stack overflow. Proceedings of the 38th International Conference on Software Engineerin. 2016

10. Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and
Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others.
Codebert: A pre-trained model for programming and natural languages. 2020

11. Zeng, Zhengran and Tan, Hanzhuo and Zhang, Haotian and Li, Jing and Zhang, Yuqun and
Zhang, Lingming. An extensive study on pre-trained models for program understanding and
generation. Proceedings of the 31st ACM SIGSOFT international symposium on software test-
ing and analysis. 2022

12. Xia, Chunqiu Steven and Wei, Yuxiang and Zhang, Lingming. Automated program repair in
the era of large pre-trained language models. 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 2023

13. Uddin, Gias and Khomh, Foutse. Automatic mining of opinions expressed about apis in stack
overflow. IEEE Transactions on Software Engineering. 2019

14. Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan. Code and named
entity recognition in stackoverflow. arXiv preprint arXiv:2005.01634. 2020

15. Devlin, Jacob. Bert: Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805

16. Qiu, Xipeng and Sun, Tianxiang and Xu, Yige and Shao, Yunfan and Dai, Ning and Huang,
Xuanjing. Pre-trained models for natural language processing: A survey. Science China techno-
logical sciences, 2020

17. Liu, Yang and Zhang, Yao and Wang, Yixin and Hou, Feng and Yuan, Jin and Tian, Jiang
and Zhang, Yang and Shi, Zhongchao and Fan, Jianping and He, Zhiqiang. A survey of visual
transformers. IEEE Transactions on Neural Networks and Learning Systems, 2023

18. Brown, Tom B. Language models are few-shot learners. arXiv preprint arXiv:2005.14165. 2020
19. Schick, Timo and Schütze, Hinrich, Exploiting cloze questions for few shot text classification

and natural language inference. arXiv preprint arXiv:2001.07676. 2020
20. Luo, Xianchang and Xue, Yinxing and Xing, Zhenchang and Sun, Jiamou. Prcbert: Prompt

learning for requirement classification using bert-based pretrained language models. Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering, 2022

10

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

21. Sahoo, Pranab and Singh, Ayush Kumar and Saha, Sriparna and Jain, Vinija and Mondal,
Samrat and Chadha, Aman. A systematic survey of prompt engineering in large language
models: Techniques and applications. arXiv preprint arXiv:2402.07927,2024

22. Rahimi, Nouf and Eassa, Fathy and Elrefaei, Lamiaa. One-and two-phase software requirement
classification using ensemble deep learning. Entropy, 2021

23. Loshchilov, I. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. 2017

11

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.3, June 2025

